

LoRaWAN TEMP

Ready-To-Use Temperature Device

Guide utilisateur / User Guide Version 2.0.1

Ce Guide utilisateur s'applique à partir des versions logicielles suivantes : This User Guide applies from the following firmware versions:

Version RTU : V01.04.00 Version APP : V01.03.08

Ce Guide utilisateur s'applique pour les deux versions de produit suivantes : This User Guide applies from the following product versions:

TEMP sonde ambiante et sonde déportée TEMP ambient probe and remote probe

TEMP double sonde déportée TEMP two external probes

Préambule / Preamble / Präambel / Preambolo / Preámbulo

- Ce guide décrit les fonctionnalités du produit adeunis
 Il explique les modes de fonctionnement du produit et la manière de le configurer.
- This guide describes the functionalities of the product adeunis[®]. It explains its functionnments and how to configure it.
- Dieser Leitfaden beschreibt die Funktionalität des Produktes adeunis
 Er erklärt die Betriebsfunktionen des Produktes und die Art und Weise, um es zu konfigurieren.
- Questa guida descrive la funzionalità del prodotto adeunis
 Questo spiega come funziona il prodotto e come configurarlo.
- Aucun extrait de ce document ne pourra être reproduit ou transmis (sous format électronique ou papier, ou par photocopie) sans l'accord d'adeunis. Ce document pourra être modifié sans préavis. Toutes les marques citées dans ce guide font l'objet d'un droit de propriété intellectuelle.
- No part of this document may be reproduced or transmitted (in electronic or paper, or photocopying) without the agreement adeunis®. This document may be changed without notice. All trademarks mentioned in this guide are the subject of intellectual property rights. adeunis®.
- Kein Teil dieses Dokuments darf reproduziert oder übertragen werden (in elektronischer oder Papierform oder Fotokopie) ohne die Zustimmung adeunis
 B. Dieses Dokument darf ohne vorherige Ankündigung ge
 inder werden. Alle Marken in diesem Handbuch erw
 ind werden, sind Gegenstand des geistigen Eigentums.
- Nessuna parte di questo documento può essere riprodotta o trasmessa (in fotocopie elettronico o cartaceo, o), senza il consenso adeunis®. Questo documento può essere modificato senza preavviso. Tutti i marchi citati in questa guida sono oggetto di diritti di proprietà intellettuale.
- Ninguna parte de este documento puede ser reproducida o transmitida (en fotocopias electrónico o en papel, o) sin el acuerdo adeunis®. Este documento puede ser modificada sin previo aviso. Todas las marcas comerciales mencionadas en esta guía son el tema de los derechos de propiedad intelectual.

Adeunis 283, rue Louis Néel 38920 Crolles France

Web www.adeunis.com

TABLE DES MATIERES

FRANCAIS 5

INFORMATIONS PRODUIT ET REGLEMENTAIRES

- 1. PRÉSENTATION DU PRODUIT
- 1.1. Description générale
- 1.2. Encombrement
- 1.4. Carte électronique
- 1.3. Deux versions de produits
- 1.5. Spécifications Techniques
- 1.5.1 Caractéristiques générales
- 1.5.2 Autonomie
- 1.5.3 Caractéristiques des sondes
- 2. FONCTIONNEMENT DU PRODUIT
- 2.1. Modes de fonctionnement
- 2.1.1 Mode PARC
- 2.1.2 Mode COMMANDE
- 2.1.3 Modes EXPLOITATION
- 2.1.4 Mode REPLI
- 2.2. Fonctionnement applicatif
- 2.2.1 Transmission périodique
- 2.2.2 Transmission sur dépassement de seuil
- 2.2.3 Transmission d'une trame de vie journalière
- 2.2.4 Mode TEST
- 2.3. Fonctionnement des LEDs
- 3. CONFIGURATION DU PRODUIT
- 3.1. lot Configurator
- 3.2. Mode Avancé
- 3.2.1 Connecter le produit à un ordinateur
- 3.2.2 Mode commande
- 3.2.3 Commande AT
- 3.3. Description des registres
- 3.3.1 Registres fonction
- 3.3.2 Registres réseau
- 4. DESCRIPTION DES TRAMES
- 4.1. Trames montantes (uplink)
- 4.1.1 Octets fixes
- 4.1.2 Trames d'information sur la configuration du produit
- 4.1.3 Trame d'information sur la configuration du réseau
- 4.1.4 Trame de vie (keep alive)
- 4.1.5 Trame de réponse à une demande de valeur de registre(s)
- 4.1.6 Trame de données
- 4.1.7 Synthèse des conditions d'envoi des trames montantes
- 4.2. Trames descendantes (downlink)
- 4.2.1 Trame de demande de la configuration du produit
- 4.2.2 Trame de demande de la configuration du réseau
- 4.2.3 Trame de demande de valeur de registres spécifiques
- 4.2.4 Trame de mise à jour de la valeur de registres spécifiques
- 5. DÉMARRAGE
- 5.1. Démarrage du produit via aimant
- 5.2. Changement de la pile
- 5.3. Fermeture du boîtier
- 6. INSTALLATION ET UTILISATION
- 6.1. Positionnement correct des émetteurs
- 6.2. Types de fixations
- 6.2.1 Fixation sur tube ou mât
- 6.2.2 Fixation par vis
- 6.2.3 Fixation Rail-DIN
- 6.3. Mise en place de la sonde déportée
- 7. HISTORIQUE DE DOCUMENT

6

11

11

12

12

13

14

14

14

14

15

15

15

15

15

16

16

16

17

20

20

21

22

22

22

22

23

24

25

25

27

29

29

29

30

31

32

33

33

34

34

34

34

35

35

36

36

36

37

38

38

38

38

39

40

40

40

ENGLIS	<u>SH 41</u>	
PRODL	JCTS AND REGULATORY INFORMATION	42
1.	PRODUCT PRESENTATION	47
1.1.	General description	47
1.2.	Dimensions	48
1.3.	Electronic board	48
1.4.	Two versions of the product	49
1.5.	lechnical Specifications	50
1.5.	1 General characteristics	50
1.5. 1 E	2 Autonomy 2 Senser characteristics	50
ີ I.ວ. ວ		5U 51
2. 21	Global operation	51
2.1.	1 PARK MODE	51
2.1.	2 COMMAND MODE	51
2.1.	3 operating mode	51
2.1.	4 REPLI mode	52
2.2.	Operating modes	52
2.2.	1 Periodic transmission	52
2.2.	2 Transmission over threshold	53
2.2.	3 Transmission of a daily Keep Alive frame	56
2.2.	4 TEST mode	56
2.3.	Operation of the LEDs	5/
۲. ۲	DEVICE CONFIGURATION	58
3.1. 2.2		28 20
	Auvaliced mode	58
3.2.	2 Command mode	59
3.3.	AT commands	60
3.4.	Description of the registers	61
3.4.	1 Function registers	61
3.4.	2 Network registers	63
4.	DESCRIPTION OF THE FRAMES	66
4.1.	Uplink frame	66
4.1.	1 Fixed bytes	66
4.1.	2 Frames of information on the product configuration	6/
4.1.	3 Frame of information on the network configuration	68
4.1.	4 Neep Alive Tidlile 5 Paply frame to a register value request in a downlink frame	00 60
4.1. /1 1	6 Data Frame	70
4.1.	7 Summary of the conditions of the transmission of the unlink frames	70
4.2.	Downlink frames	71
4.2.	1 Product configuration request frame	71
4.2.	2 Network configuration request frame	71
4.2.	3 Specific register value request frame	71
4.2.	4 Frame for updating the value of specific registers	72
5.	START-UP	73
5.1.	Starting up the product using a magnet	73
5.2.	Replacing the battery	/3
5.3.	Closing the casing	/4
6.	INSTALLATION AND USE	/5 75
6.7		75
6.2	1 Tube or mast fastenings	75
6.2	2 Fixing with screws	75
6.2	3 DIN-Rail fixing	70
6.3.	Installation of the remote probe	77
7.	DOCUMENT HISTORY	77

DEUTSCH VORSCHRIFTEN 78

FR

FRANCAIS

INFORMATIONS PRODUIT ET REGLEMENTAIRES

Information document				
Titre	LoRaWAN TEMP - Guide utilisateur			
Sous-titre	1			
Type de document	Guide utilisateur			
Version	2.0.1			

Ce document s'applique aux produits suivants :

Nom	Référence	Version firmware
LoRaWAN TEMP sonde déportée et sonde ambiante	ARF8180BAB (ancienne version)	Version RTU : V01.04.00
	ARF8180BAD (nouvelle version)	Version APP : V01.03.08
LoRaWAN TEMP double sonde externe	ARF8180BA2D	Version RTU : V01.04.00
		Version APP : V01.03.08

AVERTISSEMENT

Ce document et l'utilisation de toute information qu'il contient, est soumis à l'acceptation des termes et conditions Adeunis.

Adeunis ne donne aucune garantie sur l'exactitude ou l'exhaustivité du contenu de ce document et se réserve le droit d'apporter des modifications aux spécifications et descriptions de produit à tout moment sans préavis.

Adeunis se réserve tous les droits sur ce document et les informations qu'il contient. La reproduction, l'utilisation ou la divulgation à des tiers sans autorisation expresse est strictement interdite. Copyright © 2016, adeunis®.

adeunis® est une marque déposée dans les pays de l'UE et autres.

SUPPORT TECHNIQUE

Site web

Notre site Web contient de nombreuses informations utiles : informations sur les produits et accessoires, guides d'utilisation, logiciel de configuration et de documents techniques qui peuvent être accessibles 24h/24.

Contact

Si vous avez des problèmes techniques ou ne pouvez pas trouver les informations requises dans les documents fournis, contactez notre support technique via notre site Web, rubrique « Support Technique ». Cela permet de s'assurer que votre demande soit traitée le plus rapidement possible.

Informations utiles lorsque vous contactez notre support technique

Lorsque vous contactez le support technique merci de vous munir des informations suivantes :

- Type de produit
- Version du firmware (par exemple V1.0.0)
- Description claire de votre question ou de votre problème
- Vos coordonnées complètes

Déclaration UE de Conformité

Nous

Adeunis 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Dédarons que la DoC est délivrée sous notre seule responsabilité et fait partie du produit suivant :

Modèle produit :	TEMP Lof	laWAN
Références :	ARF8180/	AA, ARF8180BA
Objet de la déclaration :		
	ß	

L'objet de la déclaration décrit ci-dessus est conforme à la législation d'harmonisation de l'Union applicable :

Directive 2014/53/UE (RED)

Les normes hannonisées et les spécifications techniques suivantes ont été appliquées :

Titre :	Date du standard/spécification
EN 300 220-2 V3.1.1	2017/02
EN 301 489-1 V2.1.1	2016/11
EN 301 489-3 V2.1.0	201609
EN 62368-1	2014
EN 62311	2006

5 octobre 2017

Monnet Emmanuel, Responsable Certification

And

INTRODUCTION

Tous les droits de ce manuel sont la propriété exclusive de adeunis®. Tous droits réservés. La copie de ce manuel (sans l'autorisation écrite du propriétaire) par impression, copie, enregistrement ou par tout autre moyen, la traduction de ce manuel (complète ou partielle) pour toute autre langue, y compris tous les langages de programmation, en utilisant n'importe quel dispositif électrique, mécanique, magnétique, optique, manuel ou autres méthodes, est interdite.

R adeunis® se réserve le droit de modifier les spécifications techniques ou des fonctions de ses produits, ou de cesser la fabrication de l'un de ses produits, ou d'interrompre le support technique de l'un de ses produits, sans aucune notification écrite et demande expresse de ses clients, et de s'assurer que les informations à leur disposition sont valables.

Les logiciels de configurations et programmes adeunis® sont disponibles gratuitement dans une version non modifiable. adeunis® ne peut accorder aucune garantie, y compris des garanties sur l'adéquation et l'applicabilité à un certain type d'applications. Dans aucun cas le fabricant, ou le distributeur d'un programme adeunis®, ne peut être tenu pour responsable pour tous les dommages éventuels causés par l'utilisation dû dit programme. Les noms des programmes ainsi que tous les droits d'auteur relatifs aux programmes sont la propriété exclusive de adeunis®. Tout transfert, octroi de licences à un tiers, crédit-bail, location, transport, copie, édition, traduction, modification dans un autre langage de programmation ou d'ingénierie inversée (retro-ingénierie) est interdit sans l'autorisation écrite et le consentement de adeunis®.

Adeunis

283, rue Louis Néel 38920 Crolles France

RECOMMANDATIONS ENVIRONNEMENTALES

Tous les matériaux d'emballage superflus ont été supprimés. Nous avons fait notre possible afin que l'emballage soit facilement séparable en trois types de matériaux : carton (boîte), polystyrène expansible (matériel tampon) et polyéthylène (sachets, feuille de protection en mousse). Votre appareil est composé de matériaux pouvant être recyclés et réutilisés s'il est démonté par une firme spécialisée. Veuillez observer les règlements locaux sur la manière de vous débarrasser des anciens matériaux d'emballage, des piles usagées et de votre ancien appareil.

AVERTISSEMENTS

Valables pour les produits cités dans la déclaration de conformité.

Lire les instructions dans le manuel.

Ť

La sécurité procurée par ce produit n'est assurée que pour un usage conforme à sa destination. La maintenance ne peut être effectuée que par du personnel qualifié.

Risque d'explosion si la batterie est remplacée par un type incorrecte

Attention, ne pas installer l'équipement près d'une source de chaleur ou près d'une source d'humidité.

Attention, lorsque l'équipement est ouvert, ne pas réaliser d'opérations autres que celles prévues dans cette notice.

Å

Attention : ne pas ouvrir le produit, risque de choc électrique.

Attention : pour votre sécurité, il est impératif qu'avant toute intervention technique sur l'équipement ui-ci soit mis hors tension.

Attention : pour votre sécurité, le circuit d'alimentation du produit doit être de type TBTS (très basse tension de sécurité) et doit être des sources à puissance limitée.

Attention : lorsque l'antenne est installée à l'extérieur, il est impératif de connecter l'écran du câble à la terre du bâtiment. Il est recommandé d'utiliser une protection contre la foudre. Le kit de protection choisi doit permettre une mise à la terre du câble coaxial (ex : parafoudre coaxial avec mise à la terre du câble à différents endroits au niveau de l'antenne en bas du pylône et à l'entrée, ou juste avant de pénétrer dans le local).

Il faut que le produit soit muni d'un dispositif de sectionnement pour pouvoir couper l'alimentation. Celui-ci doit être proche de l'équipement.

Tout branchement électrique du produit doit être muni d'un dispositif de protection contre les surcharges et les courts-circuits.

RECOMMANDATIONS D'USAGE

- Avant d'utiliser le système, vérifiez si la tension d'alimentation figurant dans son manuel d'utilisation correspond à votre source. Dans la négative, consultez votre fournisseur. Placez l'appareil contre une surface plane, ferme et stable.
- L'appareil doit être installé à un emplacement suffisamment ventilé pour écarter tout risque d'échauffement interne et il ne doit pas être couvert avec des objets tels que journaux, nappes, rideaux, etc.
- L'antenne de l'appareil doit être dégagée et distante de toute matière conductrice de plus de 10 cm.
- L'appareil ne doit jamais être exposé à des sources de chaleur, telles que des appareils de chauffage.
- Ne pas placer l'appareil à proximité d'objets enflammés telles que des bougies allumées, chalumeaux, etc. L'appareil ne doit pas être exposé à des agents chimiques agressifs ou solvants susceptibles d'altérer la matière plastique ou de corroder les éléments métalliques.

Élimination des déchets par les utilisateurs dans les ménages privés au sein de l'Union Européenne

8 Ce symbole sur le produit ou sur son emballage indique que ce produit ne doit pas être jeté avec vos autres ordures ménagères. Au lieu de cela, il est de votre responsabilité de vous débarrasser de vos déchets en les apportant à un point de collecte désigné pour le recyclage des appareils électriques et électroniques. La collecte et le recyclage séparés de vos déchets au moment de l'élimination contribueront à conserver les ressources naturelles et à garantir un recyclage respectueux de l'environnement et de la santé humaine. Pour plus d'informations sur le centre de recyclage le plus proche de votre domicile, contactez la mairie la plus proche, le service d'élimination des ordures ménagères ou le magasin où vous avez acheté le produit.

Ce symbole sur le produit ou sur son emballage indique l'utilisation d'un tension continue (DC)

Attention : Il y a un risque d'explosion si les batteries sont remplacées par une référence non correcte. Jeter les batteries suivant les instructions d'usages. Lors du changement des batteries, le produit doit être proprement et correctement remonté.

IMPORTANT pour la Suisse : l'annexe 4.10 du standard SR 814.013 doit être appliquée pour les batteries

1. PRÉSENTATION DU PRODUIT

NOTE IMPORTANTE : le démarrage du LoRaWAN TEMP ne peut se faire que grâce à un aimant.

Description :

• Le LoRaWAN TEMP d'adeunis® est un appareil radio prêt à l'emploi permettant de mesurer des températures et de les envoyer sur un réseau sans-fil.

• Ce produit est disponible en deux versions : une version comprenant une sonde de température ambiante et une sonde de température de contact déportée et une version comprenant deux sondes de température déportées

• Ces produits répondent aux besoins des utilisateurs désireux de superviser à distance les températures interne et externe d'un local de stockage, de chambres froides ou de toutes pièces nécessitant un produit résistant à des conditions environnementales plus ou moins sévères...

- L'utilisation du protocole LoRaWAN permet d'intégrer le LoRaWAN TEMP a tout réseau déjà déployé.
- Le produit émet les données des capteurs soit périodiquement soit de façon événementielle sur dépassement de seuils haut ou bas.
- La configuration de l'émetteur est accessible par l'utilisateur via un port micro-USB, permettant notamment le choix des modes de transmission, de la périodicité ou encore des seuils de déclenchement.
- Le LoRaWAN TEMP est alimenté par une pile interne remplaçable.

NOTE IMPORTANTE 1: le LoRaWAN TEMP est livré par défaut avec une configuration OTAA, permettant à l'utilisateur de déclarer son produit auprès d'un opérateur LoRaWAN.

Composition du package

Le produit est livré dans un package carton contenant les éléments suivants : Boîtier supérieur, carte électronique, semelle boîtier Écrou presse-étoupe, 3 joints de presse-étoupe, 2 vis CBLZ 2.2 x 19mm, 2 chevilles SX4 Fischer

1.2. Encombrement

Valeurs en millimètres

1.4. Carte électronique

1.3. Deux versions de produits

1.5. Spécifications Techniques

1.5.1 Caractéristiques générales

Paramètres	Valeur
Tension d'alimentation	3.6V nominal
Alimentation	Version pile amovible : SAFT LS14500
Courant maximal	90mA
Température de fonctionnement	-25°C / +70°C
Dimensions	105 x 50 x 27mm
Poids	130g
Boîtier	IP 67
Normes radio	EN 300-220, EN 301-489, EN 60950
Réseau LoRaWAN	EU863-870
Puissance d'émission max	14 dBm
Numéro de port applicatif (downlink)	1

1.5.2 Autonomie

Condition d'utilisation	Périodicité d'envoi	Autonomie SF7	Autonomie SF12
Stockage produit avant utilisa-	140 trames/jour	6.5 ans	7 mois
tion : 1 an maximum.	100 trames/jour	7.8 ans	1 an
calcuis effectues à une tempe- rature de 20°C	50 trames/jour	10.4 ans	1.9 ans
	20 trames/jour	13 ans	4.1 ans
Sans sur-échantillonnage au	10 trames/jour	14.3 ans	6.5 ans
niveau de la periode	2 trames/jour	15.4 ans	12.2 ans

Les valeurs ci-dessus sont des estimations faites dans certaines conditions d'utilisation et d'environnement. Elles ne représentent en aucun cas un engagement de la part d'adeunis®.

ATTENTION : le branchement du câble USB et le mode TEST peuvent impacter fortement l'autonomie du produit. ATTENTION : le débranchement d'une sonde peut entrainer une consommation anormale du produit, pour éviter ces désagrément bien mettre à jour le registre S340.

1.5.3 Caractéristiques des sondes

Caractéristiques				
Sonde ambiante - Gamme de température	-25C +70°C			
Sonde ambiante - Inertie par pas de 10°C	20 minutes			
Sonde déportée – Gamme de température du capteur	-55°C+155°C			
Sonde déportée - Gamme de température du câble	-30°C+105°C			
Sonde déportée - Inertie par pas de 10°C	15 minutes			
Sonde déportée - Longueur de câble	2m			
Résolution	0,1°C			
Précision (garantie @ -40°C+155°C)	+/- 0,1°C			

ATTENTION : ne pas manipuler la sonde déportée lorsqu'elle n'est pas à température ambiante sous peine d'endommager le produit. De plus, la sonde est prévue et garantie pour résister à des températures comprises entre -30°C et +105°C, pour tout usage en dehors de cette plage de température le capteur continuera à fonctionner mais des tests sont à réaliser pour vérifier la tenue mécannique du câble.

2. FONCTIONNEMENT DU PRODUIT

2.1. Modes de fonctionnement

NOTE IMPORTANTE : adeunis® utilise le format de données Big-Endian

Le produit dispose de plusieurs modes de fonctionnement :

2.1.1 Mode PARC

Le produit est livré en mode PARC, il est alors en veille et sa consommation est minimale. La sortie du mode PARC s'effectue par le passage d'un aimant pendant une durée supérieur à 6 secondes. La LED verte s'allume pour signifier la détection de l'aimant et clignote ensuite rapidement pendant la phase de démarrage du produit.

Le dispositif envoie alors ses trames de configuration et de données (cf paragraphe 4.1).

2.1.2 Mode COMMANDE

Ce mode permet de configurer les registres du produit.

Pour entrer dans ce mode, il faut brancher un câble sur le port micro-usb du produit et entrer en mode commande par une commande AT (cf paragraphe 3).

2.1.3 Modes EXPLOITATION

Il existe deux modes possibles en exploitation :

• Mode de TEST :

Ce mode permet à l'utilisateur de réaliser des essais du produit plus rapidement en réduisant les échelles de temps du mode production et en modifiant le comportement des LEDS (voir paragraphe 2.2.5). **ATTENTION : ce mode a un impact non négligeable sur l'autonomie du produit.**

• Mode de PRODUCTION :

Ce mode permet de faire fonctionner le produit dans son utilisation finale. Il doit permettre de garantir un maximum d'autonomie au produit.

Pour passer d'un mode à l'autre on change la valeur d'un registre.

2.1.4 Mode REPLI

Le produit entre dans ce mode très basse consommation suite à la détection d'un niveau de batterie trop faible. Dans ce mode, le produit se réveille toutes les 5 secondes pour faire clignoter 2 fois la LED rouge.

Le remplacement de la pile (si le produit est en version pile changeable) suivi de l'application de l'aimant, permet de sortir de ce mode pour retourner en mode d'EXPLOITATION.

2.2. Fonctionnement applicatif

2.2.1 Transmission périodique

Le produit permet la mesure et la transmission périodique des valeurs des capteurs selon le schéma suivant :

Le produit permet de définir un sur-échantillonnage pour envoyer non pas une valeur instantanée mais une valeur moyennée au moment de la période de transmission définie.

Les paramètres associés à ce mode de fonctionnement sont :

- La période de transmission (registre 301).
- Les éventuels identifiants de l'utilisateur pour les capteurs (registres 320 et 322).
- Le facteur de sur-échantillonnage (registre 333).

La liste complète des registres se trouve au paragraphe 3.4.

Exemple :

Registre	Codage de la valeur	Valeur	Résultat
S301	Décimal	6	Mode périodique avec une période de 6x10min = 60 minutes
S320	Hexadécimal	0xD0	ldentifiant de la sonde n°1 mis à 0xD
\$322	Hexadécimal	0x80	ldentifiant de la sonde n°2 mis à 0x8
\$333	Décimal	4	Le nombre d'échantillons à mesurer et stocker entre deux transmissions est de 4

Dans cet exemple :

- Le produit émet toutes les heures (6x10min=60min)
- Le facteur de sur-échantillonnage étant égal à 4, il y aura donc toutes les 60/4=15 minutes une prise de mesure et un stockage
- La valeur envoyée sera donc une moyenne de 4 températures prélevées toutes les 15 minutes

Attention, le fait de moyenner peut minimiser l'importance de certains pics (valeur maximum) si la température évolue vite.

Prudence également sur les valeurs de période et de sur-échantillonnage car celles-ci ont des impacts sur la consommation du produit. A l'extrême une période de transmission de 10 minutes et un facteur de sur-échantillonnage de 10 amène à une prise de mesure toutes les minutes.

2.2.2 Transmission sur dépassement de seuil

Le produit permet la détection de dépassement de seuil (haut et bas) pour chaque capteur selon le schéma suivant :

Tout le début du processus est le même principe qu'en transmission périodique sauf que la période de référence est la période d'acquisition au lieu de la période de transmission.

Le produit envoie une trame de donnée lors d'un dépassement de seuil mais aussi lors d'un retour à la normale.

Explication des seuils et hystérésis :

La période de scrutation des capteurs est égale à la période d'acquisition (registre 332) divisée par le facteur de sur-échantillonnage (registre 333).

Les paramètres associés à ce mode de fonctionnement sont :

- La période de transmission (égale à zéro dans ce cas d'usage) (registre 301).
- Les éventuels identifiants de l'utilisateur pour les capteurs (registres 320 et 322).
- La configuration des événements (registres 321 et 323).
- Le seuil alarme haute pour le sonde 1 (registre 324).
- L'hystérésis alarme haute pour le sonde 1 (registre 325).
- Le seuil alarme basse pour le sonde 1 (registre 326).
- L'hystérésis alarme basse pour le sonde 1 (registre 327).
- Le seuil alarme haute pour le sonde 2 (registre 328).
- L'hystérésis alarme haute pour le sonde 2 (registre 329).
- Le seuil alarme basse pour le sonde 2 (registre 330).
- L'hystérésis alarme basse pour le sonde 2 (registre 331).
- La période d'acquisition (registre 332)
- Le facteur de sur-échantillonnage (registre 333)

La liste complète des registres se trouve au paragraphe 3.4.

Exemple :

Registre	Codage de la valeur	Valeur	Résultat
\$301	Décimal	0	Mode événementiel
\$320	Hexadécimal	0xD0	Identifiant de la sonde 1 mis à 0xD
\$322	Hexadécimal	0x80	Identifiant de la sonde 2 mis à 0x8
S321	Hexadécimal	0x03	Pour la sonde 1 : Détection de seuils haut et bas
S323	Hexadécimal	0x02	Pour la sonde 2 : Détection de seuils hauts uniquement
S324	Décimal	300	La valeur du seuil haut de la sonde 1 est : 300/10=30°C
S325	Décimal	10	La valeur de l'hystérésis du seuil haut de la sonde 1 est : 10/10=1°C
\$326	Décimal	50	La valeur du seuil bas de la sonde 1 est : 50/10=5°C
S327	Décimal	5	La valeur de l'hystérésis du seuil bas de la sonde 1 est : 5/10=0.5°C
S328	Décimal	400	La valeur du seuil haut de la sonde 2 est : 400/10=40°C
S329	Décimal	20	La valeur de l'hystérésis du seuil haut de la sonde 2 est : 20/10=2°C
\$330	Décimal	-300	La valeur du seuil bas de la sonde 2 est : -300/10=-30°C
S331	Décimal	10	La valeur de l'hystérésis du seuil bas de la sonde 2 est : 10/10=1°C
\$332	Décimal	12	La période d'acquisition est de 12 minutes
\$333	Décimal	6	Le nombre d'échantillons à mesurer et stocker entre deux trans- missions est de 6

Dans cet exemple :

• Le produit compare les mesures toutes les 12 minutes et émet si nécessaire

- Le facteur de sur-échantillonnage étant égal à 6, il y aura donc toutes les 12/6=2 minutes une prise de mesure et un stockage
- La valeur envoyée sera donc une moyenne de 6 températures prélevées toutes les 2 minutes

Attention, le fait de moyenner peut minimiser l'importance de certains pics (valeur maximum) si la température évolue vite.

Prudence également sur les valeurs de période et de sur-échantillonnage car celles-ci ont des impacts sur la consommation du produit. A l'extrême une période d'acquisition de 1 minute et un facteur de sur-échantillonnage de 10 amène à une prise de mesure toutes les 6 secondes.

2.2.3 Transmission d'une trame de vie journalière

En mode événementiel (seuil), le produit pourrait ne jamais envoyer de trames de données. Ainsi, pour s'assurer du bon fonctionnement de celui-ci une trame de vie est transmise régulièrement selon le schéma suivant :

En mode périodique (registre 301 différent de 0), il n'y a pas d'émission de trames de vie.

Les paramètres associés à ce mode de fonctionnement sont :

• Le réglage de la période d'émission de la trame de vie (1 fois par heure à 1 fois par jour) (registre 300).

La liste complète des registres se trouve au paragraphe 3.4

Exemple :

Registre	Codage de la valeur	Valeur	Résultat
S300	Décimal	72	La trame de vie est envoyée toutes les : 72x10=720min soit 12h (donc 2 fois par jour)

2.2.4 Mode TEST

Ce mode permet à l'utilisateur de réaliser des essais du produit plus rapidement en réduisant les échelles de temps du mode production et en modifiant le comportement des LEDS.

Il est obtenu en positionnant le registre S306 à la valeur 2 en mode COMMANDE. Une fois sorti du mode COMMANDE, le produit reprend le comportement applicatif précédemment défini mais avec les changements suivants :

- Registre S300 : la périodicité de la trame de vie (keep alive) est exprimée en vingtaines de secondes au lieu de dizaines de minutes. Ainsi en mode TEST lorsque le registre 300 vaut 144, la trame de vie n'est plus émise toutes les 144x10min=1440 minutes soit 24h mais toutes les 144x20s=2880 secondes soit 48 minutes.

- Registre S301 : la périodicité d'envoi des données (mode périodique) est exprimée en vingtaines de secondes au lieu de dizaines de minutes. Ainsi en mode TEST lorsque le registre 301 vaut 1, la trame de vie n'est plus émise toutes les 10min mais toutes les 20 secondes.

- Registre S332 : la périodicité d'acquisition des données (mode événementiel) est exprimée en dizaines de secondes au lieu de la minute. Ainsi en mode TEST lorsque le registre 332 vaut 1, la trame de vie n'est plus émise toutes les minutes mais toutes les 10 secondes.

- Les LEDS ont également un comportement différent permettant un retour visuel à l'utilisateur dans les cas d'émission et de réception de trames (voir paragraphe 2.3 pour plus de détails).

La liste complète des registres se trouve au paragraphe 3.4. Exemple :

Registre	Codage de la valeur	Valeur	Résultat
S306	Décimal	2	Le produit est en mode TEST
\$300	Décimal	72	La trame de vie est envoyée toutes les : 72x20=1440s soit 24 minutes
\$301	Décimal	6	Mode périodique avec une période de 6x20 = 120s soit 2 minutes
\$332	Décimal	10	En mode événementiel la période d'acquisition est de : 10x10=100 secondes

2.3. Fonctionnement des LEDs

Mode	Etat Led Rouge	Etat Led Verte
Émission de trame (mode TEST seulement)		Allumé pendant l'émission
Réception de trame (mode TEST seulement)	Allumé pendant la réception d'une trame de downlink	
Produit en mode Park	Éteinte	Éteinte
Processus de détection d'aimant (de 1 à 6 secondes)	Éteinte	ON dès détection de l'aimant à concurrence de 1 seconde
Démarrage du produit (après détection de l'aimant)	Éteinte	Clignotement rapide 6 cycles 100 ms ON / 100 ms OFF
Processus de JOIN (Produit LORA)	Pendant la phase de JOIN : clignotante : 50ms ON / 1 s OFF	Pendant la phase de JOIN : clignotante : 50ms ON / 1 s OFF (juste après LED rouge)
	Si phase de JOIN terminée (JOIN ACCEPT) : clignotante : 50ms ON / 50ms OFF (6x)	Si phase de JOIN terminée (JOIN ACCEPT) : clignotante : 50ms ON / 50ms OFF (6x) (juste avant LED rouge)
Passage en mode commande	Allumée Fixe	Allumée Fixe
Niveau de batterie faible	Clignotante (0.5s ON toutes les 60s)	
Produit en défaut (retour usine)	Fixe	
Produit en mode production (mode TEST seulement)	50ms ON / 30 s OFF	50ms ON / 30 s OFF (juste avant LED rouge)
Produit en mode REPLI	Clignotante (100ms ON / 100ms OFF) x2 toutes les 5s	

3. CONFIGURATION DU PRODUIT

La configuration du produit au travers du port micro-USB peut désormais se faire de deux manières : via l'IoT Configurator (application à l'interface conviviale) soit par envoi de commandes AT. Pour ouvrir le boitier du produit se reporter au paragraphe 5.1.

3.1. lot Configurator

IoT Configurator est une application d'adeunis® développée pour faciliter la configuration des produits grâce à une interface conviviale. L'IoT Configurator peut s'utiliser directement sur un mobile ou une tablette sous Android ou via un PC Windows. *Compatible Windows 10 seulement et Android 5.0.0 Minimum*

Connecter par l'interface micro-USB (cf paragraphe 5.2) présente sur le produit le PC ou le mobile. L'application reconnait automatiquement le produit, télécharge les paramètres de configuration et permet de configurer le produit rapidement et intuitivement à l'aide des formulaires (menus déroulants, cases à cocher, champs de texte..). L'application permet également la possibilité d'exporter une configuration applicative pour pouvoir la dupliquer sur d'autres produits en quelques clics.

L'IoT Configurator s'enrichit en permanence des nouveautés.

Pour mobile ou tablette :

Application téléchargeable gratuitement sur Google Play https://play.google.com/store/apps/details?id=com.adeunis.IoTConfiguratorApp

Pour ordinateur : directement sur le site internet Adeunis <u>https://www.adeunis.com/telechargements/</u>

3.2. Mode Avancé

3.2.1 Connecter le produit à un ordinateur

Connectez le produit sur une entrée USB d'un ordinateur. Le produit possède un connecteur micro USB Type B (cf paragraphe 5.2). Lors de la connexion le produit doit être reconnu par l'ordinateur comme un périphérique Virtual Com Port (VCP).

Sous Windows : Une vérification du bon fonctionnement de la reconnaissance du produit par l'ordinateur peut être obtenue en consultant le gestionnaire de périphérique. Vous devez voir apparaître lors de la connexion un périphérique série USB avec un numéro de port COM associé.

🛃 Gestionnaire de périphériques	_	\times
Fichier Action Affichage ?		
> 📱 Périphériques logiciels		^
> 🍢 Périphériques système		
✓		
Périphérique série USB (COM5)		
> Processeurs		
> 🚺 Souris et autres périphériques de pointage		
		\checkmark

Si vous ne voyez aucun périphérique de ce type, vous devez installer le driver USB pour ce périphérique, disponible sur notre site internet : https://www.adeunis.com/telechargements/

Sélectionnez :

- Driver USB-STM32_x64, si votre ordinateur est un système 64 bits
- Driver USB-STM32, si votre ordinateur est un système 32 bits

3.2.2 Mode commande

Utiliser un terminal port COM pour communiquer avec le produit. Nous utilisons le soft terminal port COM HERCULES disponible en téléchargement gratuit à l'adresse suivante :

http://www.hw-group.com/products/hercules/index_en.html

• Sous Hercules, sélectionner l'onglet «Serial», puis configurer le port série avec les paramètres série suivants :

Paramètres	Valeur
Débit	115 200 bps
Parité	Aucune
Data	8
Stop Bit	1

- Sélectionner le port série sur lequel le périphérique s'est créé sous Windows.
- Cliquer sur le bouton «Open» pour ouvrir le port série.

NOTE INFORMATION : Si le port com est correctement ouvert, Hercules vous indique «Serial port COM3 opened». Sinon vous avez «Serial port com opening error», soit le port com est déjà ouvert sur une autre application, soit il n'existe pas.

S Hercules SETUP utility by HW-group.com	-		×
UDP Setup Serial TCP Client TCP Server UDP Test Mode About			
Received/Sent data	Covial		
Serial port COMS opened	Name COM5 Baud 115200 Data siz 8 Parity none Handsh OFF Mode Free	0 ze nake	
	HW	X Close g FW upo	date
Image: Series Image: Filler Image: F	HIL www.H Hercule	Ugro HW-group As SETUP	up com stility 2 2 R

Tapez '+++' pour passer le produit en mode de configuration.

Sur le terminal port com, vous devez également avoir un retour d'information «CM» pour Command Mode.

L'envoi de caractère sur Hercule s'affiche en magenta et la réception en noir. Si vous ne voyez pas les caractères d'envoi, c'est probablement parce que l'ECHO n'est pas actif sur le logiciel. Activer l'option dans le menu accessible par un clic droit dans la fenêtre de visualisation.

Received/Sent data

Serial port COM3 opened +++CONNECTING... CM

3.2.3 Commande AT

Une commande débute avec les 2 caractères ASCII : « AT », suivis d'un ou plusieurs caractères et données (voir ci-après la syntaxe des commandes AT disponibles sur le produit).

Chaque commande doit se terminer par un « CR » ou « CR » « LF », les deux possibilités sont acceptées. (CR signifie : Carriage Return, LF signifie : Line Feed).

À la réception d'une commande, le produit retourne :

- « Les données »<cr><lf>, pour une commande de lecture type ATS<n> ? , AT/S ou AT/V.
- « 0 » <cr><lf>, pour toutes les autres commandes lorsque celle-ci est acceptée.
- « E » <cr><lf>, s'il refuse la commande car erreur de syntaxe, commande inconnue, registre inconnu, paramètre invalide,
- « CM » <cr><lf>, s'il accepte l'entrée en mode commande

Tableau des commandes AT :

Commande	Description	Exemple de réponse
+++	Entrée en mode commande	«CM» <cr><lf></lf></cr>
ATPIN <pin></pin>	Donne accès aux commandes AT si le registre S304 est différent de 0	
AT/V	Affiche la version du firmware de l'application et la versioin du firmware du module RTU	APPx_Vxx.xx.xx:RTUx_Vyy.yy.yy
AT/N	Affiche le réseau utilisé	"LoRa" or "SIGFOX" or «WMBUS»
AT/ARF	Affiche la référence du produit	«ARF8240CAA\r\n»
ATS <n>?</n>	Retourne le contenu du regitre <n></n>	S <n>=<y><cr><lf> avec <y> comme contenu de registre</y></lf></cr></y></n>
AT/S	Affiche tous les registres	1
ATS <n>=<m></m></n>	Attribue la valeur <m> au registre <n></n></m>	«O» <cr><lf> if Ok, «E»<cr><lf> if error, «W»<cr><lf> if coherency error</lf></cr></lf></cr></lf></cr>
ATR APP	Remet les configurations par défaut de la partie applicative	«0» <cr><lf></lf></cr>
AT&W	Sauvegarde la nouvelle configuration	«O» <cr><lf>, «E»<cr><lf> if coherency error</lf></cr></lf></cr>
ATO	Permet de sortir du mode commande	«O» <cr><lf>, «E»<cr><lf> if coherency error</lf></cr></lf></cr>
ATT63 PROVIDER	Mot de passe du fournisseur	«O» <cr><lf></lf></cr>

Exemple d'une suite de commandes et de réponses correspondantes telles qu'on pourrait les voir sur un terminal :

Syntaxe de la Commande	Description	Syntaxe de la réponse à la ligne suivante
+++	Demande d'entrée en mode commande	CM
ATS221=1	Demande de passage en mode d'activation OTAA	0
ATS214=0018B200	Modification APP_EUI MSB	E -> Cette commande n'est pas valide (registre non débloqué)
ATT63 PROVIDER	Déblocage registre opérateur	0
ATS214=0018B200	Modification APP_EUI MSB	0
ATS215?	Retourne la valeur du registre S215	S200=44512451
AT&W	Demande de mémorisation de l'état des registres	0
ATO	Demande de sortie du mode commande	0

Interprétation de l'exemple ci-avant : l'utilisateur a voulu modifier le début de l'APP_EUI après avoir fait une commande non autorisée (réponse E), un déblocage des registres a été réalisé pour modifier ce registre. Une vérification de la deuxième partie de l'APP_EUI est effectuée et une sauvegarde des paramètres avant sortie est réalisée. Dès la sortie du produit du mode commande, le produit effectue une demande de JOIN.

FR

3.3. Description des registres

A la mise sous tension le produit fonctionne selon la dernière configuration sauvegardée (configuration usine si c'est la première mise sous tension, ou si cette configuration n'a pas été changée).

La commande de modification type **ATS**<**n**>=<**m**> **p**ermet de modifier le contenu des registres ; <**n**> représentant le numéro du registre et <**m**> la valeur à assigner. Cette dernière est soit une valeur décimale soit une valeur hexadécimale en cohérence avec la colonne « **Codage** » des tableaux ci-après.

Exemples :

- ATS300=6 assigne la valeur décimale 6 au registre 300
- ATS320=2 assigne la valeur hexadécimale 0x02 au registre 320

Il est impératif de sauvegarder les paramètres par la commande **AT&W** avant de sortir du mode commande sinon tous les changements seront perdus.

IMPORTANT : les registres non documentés (pouvant apparaître dans la liste suite à la commande AT/S) dans les paragraphes qui suivent sont réservés et ne doivent pas être modifiés.

3.3.1 Registres fonction

La liste des registres ci-dessous permet de modifier le comportement applicatif du produit.

Registre	Taille (octets)	Description	Codage	Détails
S300	1	Période de transmission de la trame de vie	Décimal	Défaut : 144 Min/max : 1 à 255 Unité : x 10min si S306=1 x 20s si S306=2
S301	1	Période de transmission des données capteurs	Décimal	Défaut : 6 Min/max : 0 à 255 Unité : x 10min si S306=1 x 20s si S306=2 La valeur 0 signifie pas d'envoi périodique donc un fonc- tionnement événementiel
\$303	1	Activation du mode acquitté	Décimal	Défaut : 0 (désactivé) Valeurs : 0 (désactivé) à 1 (activé)
S304	2	Code PIN	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 9999 Code PIN utilisé avec la commande ATPIN. La valeur 0 désactive le code PIN. ATTENTION : le produit ne possède pas de mécanisme de déverrouillage du code PIN en cas d'activation de celui-ci et d'oubli du code.
S306	1	Mode de fonctionnement	Décimal	Défaut : 0 Permet de passer le produit dans l'un des modes suivants • 0: mode PARC • 1: mode PRODUCTION • 2: mode TEST • 3: mode REPLI

S320	1	Identifiant de la sonde 1	Hexadécimal	Défaut : 0x00
				Bits 0 à 3 : Réservés Bits 4 à 7 : Identifiant (libre d'utilisation)
S321	1	Configuration du comportement événe- mentiel de la sonde 1	Hexadécimal	Défaut 0x03 Bits 0 à 1 : Déclenchement sur seuil • 0 = Aucun • 1 = Bas uniquement • 2 = Haut uniquement • 3 = Bas et Haut Bits 2 à 7 : Réservés
\$322	1	Identifiant de la sonde 2	Hexadécimal	Voir détails registre 320
\$323	1	Configuration du comportement événe- mentiel de la sonde 2	Hexadécimal	Voir détails registre 321
\$324	4	Valeur seuil Haut de la sonde 1	Décimal	Défaut : 300 Min/max : -550 à 1200 (valeur signée) Unité : dixième de °C
S325	1	Valeur de l'hystérésis seuil Haut de la sonde 1	Décimal	Défaut : 10 Min/max : 0 à 255 (valeur non signée) Unité : dixième de °C
S326	4	Valeur seuil Bas de la sonde 1	Décimal	Défaut : 50 Min/max : -550 à 1200 (valeur signée) Unité : dixième de °C
S327	1	Valeur de l'hystérésis seuil Bas de la sonde 2	Décimal	Défaut : 10 Min/max : 0 à 255 (valeur non signée) Unité : dixième de °C
S328	4	Valeur seuil Haut de la sonde 2	Décimal	Défaut : 300 Min/max : -550 à 1200 (valeur signée) Unité : dixième de °C
\$329	1	Valeur de l'hystérésis seuil Haut de la sonde 2	Décimal Défaut : 10 Min/max : 0 à 255 (valeur non signée) Unité : dixième de °C	
\$330	4	Valeur seuil Bas de la sonde 2	Décimal	Défaut : 50 Min/max : -550 à 1200 (valeur signée) Unité : dixième de °C
\$331	1	Valeur de l'hystérésis seuil Bas de la sonde 2	Décimal	Défaut : 10 Min/max : 0 à 255 (valeur non signée) Unité : dixième de °C
\$332	1	Période d'acquisition	Décimal	Défaut : 10 Min/max : 1 à 255 Unité : x 1 minute si S306=1 x 10 secondes si S306=2
\$333	1	Facteur de sur-échantillonnage	Décimal	Défaut : 1 Min/max : 1 à 10 Unité : aucune
S340	1	Activation ou désactivation des sondes	Décimal	Défaut : 3 1 : uniquement sonde 1 activée 2 : uniquement sonde 2 activée 3 : toutes les sondes sont activées

ATTENTION : si S340= 1 ou 2, si la sonde restante est arrachée ou sectionnée, débranchée ou décâbler le produit arrêtera d'émettre.

3.3.2 Registres réseau

La liste des registres ci-dessous permet de modifier les paramètres réseau du produit. Cette liste est accessible en mode PROVIDER suite à l'exécution de la commande ATT63 PROVIDER.

Ces registres doivent être manipulés avec précaution car susceptibles d'engendrer des problèmes de communication ou de non-respect de la législation en vigueur.

Registre	Description	Codage	Détails
S201	Facteur d'étalement (SF) par défaut	Décimal	Défaut : 12 (868) ou 10 (915) selon la référence du produit Min/max : 4 à 12 Unité : aucune
S204	Réservé	Hexadécimal	Ne pas utiliser
S214	LORA APP-EUI (première partie – MSB)	Hexadécimal	Défaut : 0
S215	LORA APP-EUI (deuxième partie – LSB)	Hexadécimal	Clé codée sur 16 caractères. Chaque registre contient une partie de la clé. Utilisée lors de la phase de JOIN en mode OTAA
			Exemple : APP-EUI = 0018B244 41524632 • S214 = 0018B244 • S215 = 41524632
S216	LORA APP-KEY (première partie – MSB)	Hexadécimal	Défaut : 0
S217	LORA APP-KEY (deuxième partie – MID MSB)	Hexadécimal	Clé codée sur 32 caractères octets. Chacun des 4 registres
S218	LORA APP-KEY (troisième partie – MID LSB)	Hexadécimal	CONTIENT & CATACTERES. L'Itilisée lors de la phase de IOIN en mode OTAA
S219	LORA APP-KEY (quatrième partie – LSB)	Hexadécimal	
			Exemple : APP-KEY = 0018B244 41524632 0018B200 00000912 • S216 = 0018B244 • S217= 41524632 • S218 = 0018B200 • S219 = 00000912
S220	Options LoRaWAN	Hexadécimal	Défaut : 5 Bit 0 : Activation de l'ADR ON(1)/OFF(0) Bit 1 : Réservé Bit 2 : DUTYCYCLE ON(1)/DUTYCYCLE OFF(0) Bit 3 à 7 : Réservés ATTENTION : La désactivation du Duty Cycle peut entrainer selon l'usage du produit un non-respect des conditions d'utilisation de la bande de fréquence donc une violation de la réglementation en vigueur. Dans le cas de la désactivation du Duty Cycle la responsabilité est transférée à l'utilisateur.
\$221	Mode d'activation	Décimal	Défaut : 1 Choix: (voir NOTE1 après le tableau) • 0 : ABP • 1: OTAA
S222	LORA NWK_SKEY (première partie – MSB)	Hexadécimal	Défaut : 0
S223	LORA NWK_SKEY (deuxième partie - MID MSB)	Hexadécimal	Paramètre codé sur 16 octets. Chacun des 4 registres contient 4 octets.
S224	LORA NWK_SKEY (troisième partie - MID LSB)	Hexadécimal]
S225	LORA NWK_SKEY (quatrième partie – LSB)	Hexadécimal	

S226	LORA APP_SKEY (première partie – MSB)	Hexadécimal	Défaut : 0
S227	LORA APP_SKEY (deuxième partie - MID MSB)	Hexadécimal	Paramètre codé sur 16 octets. Chacun des 4 registres contient
S228	LORA APP_SKEY (troisième partie - MID LSB)	Hexadécimal	
S229	LORA APP_SKEY (quatrième partie – LSB)	Hexadécimal	
S280	NETWORK ID	Hexadécimal	Défaut 0
			Lecture seule
S281	DEVICE ADDRESS	Hexadécimal	Défaut : 0

<u>NOTE 1 :</u>

Le mode «Over The Air Activation» (OTAA), utilise une phase de JOIN avant de pouvoir émettre sur le réseau. Ce mode utilise les codes APP_EUI (S214 et S215) et APP_KEY (S216 à S219) pendant cette phase pour créer les clés de communication réseau.

Une fois cette phase terminée, les codes APP_sKEY, NWK_sKEY et DEVICE ADDRESS seront présents dans les registres correspondants.

Une nouvelle phase de JOIN est démarrée à chaque fois que le produit sort du mode commande, qu'un reset est effectué ou que le produit est mis sous tension.

Codes :

• APP_EUI Identifiant d'application global (fourni par défaut par adeunis®)

• APP_KEY Clé d'application du device (fourni par défaut par adeunis®)

Le mode «Activation By Personalization» (ABP), n'a pas de phase de JOIN, il émet directement sur le réseau en utilisant directement les codes NWK_sKEY (S222 à S225), APP_sKEY (S226 à S229) et DEVICE ADDRESS (S281) pour communiquer.

Codes :

- NWK_sKEY Clé de session réseau (fourni par défaut par adeunis®)
- APP_sKEY Clé de session applicative (fourni par défaut par adeunis®)
- DEVICE ADDRESS Adresse du device dans le réseau (fourni par défaut par adeunis®)

<u>NOTE 2 :</u>

Par défaut, les canaux 0 à 2 utilisent les paramètres par défaut du réseau LoRaWAN, les 4 autres canaux sont inactifs. Une valeur du registre différente de 0 ou 1 permet de configurer le canal comme suit :

Bit	7	6	5	4	3	2	1	0
Description		Fréquence du canal					DR Max	DR Min
Exemple	868100						5	3

Valeur Data Rate (DR)	Description
0	SF12
1	SF11
2	SF10
3	SF9
4	SF8
5	SF7
6	SF7 – BW 250kHz
7	FSK 50 kps

L'exemple donné permet de configurer une fréquence de 868.1 Hz et autorise un SF de 7 à 9. La commande à envoyer pour réaliser cette opération est : ATS250=86810053<cr>

4. DESCRIPTION DES TRAMES

4.1. Trames montantes (uplink)

Toutes les trames montantes du produit vers le réseau (uplink) ont toujours une taille de 11 octets.

4.1.1 Octets fixes

Les deux premiers octets de la trame sont systématiquement dédiés pour indiquer le code de la trame et le statut comme présenté ci-dessous :

0	1	2	3	4	5	6	7	8	9	10
Code	Statut					PAYLOAD				

4.1.1.01 Code byte

Cet octet contient le code associé à la trame pour faciliter le décodage de celle-ci par le système d'information.

4.1.1.02 L'octet de statut

L'octet de statut (status byte) est décomposé de la manière suivante :

Alarm Statut	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
		Frame Counter		Alarme active pour la sonde 2	Alarme active pour la sonde 1	Erreur hardware	Batterie faible	Configura- tion
Pas d'erreur				Х	Х	0	0	0
Configuration effectuée				Х	Х	Х	Х	1
Batterie faible				0	0	0	1	0
Erreur Harware		0x00 to 0x07		Х	Х	1	Х	Х
Alarme active pour la sonde 1				Х	1	Х	Х	Х
Alarme active pour la sonde 2				1	Х	Х	Х	Х

Détails des champs :

• Frame counter : compteur de trames, il s'incrémente à chaque émission et permet rapidement de voir si une trame a été perdue. Il compte de 0 à 7 avant de reboucler.

• Erreur HW : ce bit est mis à 1 lorsqu'une erreur matérielle s'est produite, par exemple un problème d'écriture en EEPROM, un problème de lecture sur l'ADC...Le produit doit être retourné en SAV.

•Batterie faible : bit à 1 si la tension batterie est inférieure à 2,5V, sinon 0. Cette information reste permanente.

• Configuration : bit à 1 si une configuration a été réalisée lors de la dernière trame descendante, sinon 0. Ce bit retourne à 0 dès la trame suivante.

• Alarme active (sonde 1 ou sonde 2) : le bit est à 1 lorsqu'un seuil haut ou bas est dépassé sur la sonde concernée, ce bit reste à 1 dans toutes les trames envoyées tant que la condition d'alarme persiste et repasse à zéro lorsque les conditions d'alarme ne sont plus respectées.

Exemple :

Une valeur de l'octet statut égale 0xA2 (= 10100010 en binaire) donne :

• Bit 7 à 5 = 101 = 0x05 soit un compteur de trame à 5

• Bit 4 à 0 = 00010 en binaire soit une alarme batterie faible mais pas d'alarme de seuil dépassée sur aucune des sondes

4.1.2 Trames d'information sur la configuration du produit

Lors du passage en mode exploitation (sortie du mode PARC ou COMMANDE) ou de la réception d'une trame descendante 0x01, les trames suivantes (0x10 à 0x12) représentant la configuration applicative du produit sont transmises :

	0	1	2	3	4	5	6	7	8	9	10
	Code	Statut					PAYLOAD				
FR	0x10	Cf Statut	S300	S301	S320	S321	S322	S323	S306	S340	S332
	0x10	0xA2	0x48	0x00	0xD0	0x00	0x80	0x02	0x01	0x02	0x0A

Description de la trame :

- Octet 2 : registre 300, périodicité de la trame de vie, exprimé en dizaine de minutes
- Octet 3 : registre 301, périodicité de la transmission (Mode périodique), exprimé en dizaine de minutes
- Octet 4 : registre 320, configuration de la sonde 1
- Octet 5 : registre 321, configuration des évènements de la sonde 1
- Octet 6 : registre 322, configuration de la sonde 2
- Octet 7 : registre 323, configuration des évènements de la sonde 2
- Octet 8 : registre 306, mode du produit (PARC, STANDARD (production), TEST ou REPLI)
- Octet 9 : registre 340 : état d'activation des capteurs
- o 1 = seule la sonde 1 est activée
- o 2 = seule la sonde 2 est activée
- o 3 = les deux sondes sont activées
- Octet 10 : registre 332, périodicité de l'acquisition, exprimée en minute

Dans l'exemple en gris cela donne :

- Octet 2=0x48 : registre 300, trame de vie émise toutes les 12 heures
- Octet 3=0x00 : registre 301, mode événementiel
- Octet 4=0xD0 : registre 320, l'identifiant de la sonde 1 donné par l'utilisateur est égal à 0xD
- •Octet 5=0x00 : registre 321 : pas de détection de seuil pour la sonde 1
- Octet 6=0x80 : registre 322 : l'identifiant de la sonde 2 donné par l'utilisateur est égal à 0x8
- Octet 7=0x02 : registre 323 : détection de seuils haut uniquement pour la sonde 2
- Octet 8=0x01 : registre 306, mode PRODUCTION en cours
- Octet 9=0x02 : registre 340, seule la sonde 2 est activée
- Octet 10=0x0A : registre 332, la périodicité de l'acquisition est de 10 minutes

0	1	2 à 3	4	5 à 6	7	8	9	10
Code	Statut			PAYLOA	٨D			
0x11	Cf Statut	\$324	S325	S326	S327	S333	Х	Х
0x11	0xA2	0x012C	0x0A	0x0032	0x05	0x06		

Description de la trame :

- Octets 2 à 3 : registre 324, seuil haut de la sonde 1, octet de poids fort en premier
- Octet 4 : registre 325, hystérésis seuil haut de la sonde 1
- Octets 5 à 6 : registre 326, seuil bas de la sonde 1, octet de poids fort en premier
- Octet 7 : registre 327, hystérésis seuil bas de la sonde 1
- Octet 8 : registre 333, facteur de sur-échantillonnage

Dans l'exemple en gris cela donne :

- Octets 2 à 3=0x012C : registre 324, la valeur du seuil haut de la sonde 1 est : 300/10=30°C
- Octet 4=0x0A : registre 325, la valeur de l'hystérésis du seuil haut de la sonde 1 est : 10/10=1°C
- Octets 5 à 6=x0032 : registre 326, la valeur du seuil bas de la sonde 1 est : 50/10=5°C
- Octet 7=0x05 : registre 327, la valeur de l'hystérésis du seuil bas de la sonde 1 est : 5/10=0.5°C
- Octet 8=0x06 : registre 333, le facteur de sur-échantillonnage vaut 6

0	1	2 à 3	4	5 à 6	7	8	9	10
Code	Statut			PAYLOAD				
0x12	Cf Statut	S328	S329	S330	S331	Х	Х	Х
0x12	0xA2	0x0190	0x14	0xFED4	0x05			

Description de la trame :

- Octets 2 à 3 : registre 328, seuil haut de la sonde 2, octet de poids fort en premier
- Octet 4 : registre 329, hystérésis seuil haut de la sonde 2
- Octets 5 à 6 : registre 330, seuil bas de la sonde 2, octet de poids fort en premier
- Octet 7 : registre 331, hystérésis seuil bas de la sonde 2

Dans l'exemple en gris cela donne :

- Octets 2 à 3=0x0190 : registre 328, la valeur du seuil haut de la sonde 2 est : 400/10=40°C
- Octet 4=0x14 : registre 329, la valeur de l'hystérésis du seuil haut de la sonde 2 est : 20/10=2°C
- Octets 5 à 6=0xFED4 : registre 330, le registre étant signé la valeur hexadécimale 0xFED4 vaut -300 donc la valeur du seuil bas de la sonde 2 est : -300/10=-30°C
- Octet 7=0x05 : registre 331, la valeur de l'hystérésis du seuil bas de la sonde 2 est : 5/10=0.5°C

4.1.3 Trame d'information sur la configuration du réseau

Lors du passage en mode exploitation (sortie du mode PARC ou COMMANDE) ou de la réception d'une trame descendante 0x02, la trame suivante (0x20) représentant la configuration réseau du produit est transmise :

0	1	2	3	4	5	6	7	8	9	10
Code	Statut					PAYLOAD				
0x20	Cf Statut	ADR	MODE	Х	Х	Х	Х	Х	Х	Х
0x20	0xA2	0x01	0x01							

Description de la trame :

- Octet 2 : activation de l'Adaptative Data Rate : ON (valeur = 1) ou OFF (valeur = 0)
- Octet 3 : mode de connexion : ABP (valeur = 0) ou OTAA (valeur = 1)

Dans l'exemple en gris cela donne :

- Octet 2=0x01 : l'Adaptative Data Rate est activé
- Octet 3=0x01 : mode de connexion OTAA

4.1.4 Trame de vie (keep alive)

Cette trame (0x30) est émise uniquement dans le mode événement à la fréquence définie par le registre 300. Elle contient les mêmes champs que la trame de données (0x43) :

	0	1	2	3	4	5	6	7	8	9	10
	Code	Statut			PAYLOAD						
R	0x30	Cf Statut	ldentifiant sonde 1	Valeur lue s	sur la sonde 1	ldentifiant sonde 2	Valeur lue s	sur la sonde 2	х	Х	х
	0x30	0xA2	0xD1	0x0	15E	0x81	0xF	F06			

Description de la trame :

- Octet 2 :
 - o Bits 0 à 3 :
 - 0 : sonde désactivée
 - 1 : sonde activée
 - o Bits 4 à 7 : identifiant de l'utilisateur définie dans le registre 320
- Octets 3 à 4 : valeur mesurée sur la sonde 1.
 - Valeur signée sur 16 bits,
 - Exprimée en dixièmes de degrés,
 - Octet de poids fort en premier.
 - La valeur spéciale 0x8000, équivalente à -3276,8 °C est retournée en cas de défaut du capteur.
- Octet 5 :
 - o Bits 0 à 3 :
 - 0 : sonde désactivée
 - 1 : sonde activée

o Bits 4 à 7 : identifiant de l'utilisateur définie dans le registre 322

- Octet 6 à 7 : valeur mesurée sur la sonde 2.
 - Valeur signée sur 16 bits,
 - Exprimée en dixièmes de degrés,
 - Octet de poids fort en premier.
 - La valeur spéciale 0x8000, équivalente à -3276,8 °C est retournée en cas de défaut du capteur.

Dans l'exemple en gris cela donne :

- Octet 2=0xD1 :
 - o Bits 0 à 3 = 0x1 : la sonde 1 est activée
 - o Bits 4 à 7 = 0xD : l'identifiant de la sonde 1 défini par l'utilisateur est égal à 0xD
- Octets 3 à 4=0x015E : la valeur mesurée sur la sonde 1 est 350/10=35°C
- Octet 5 =0x81:
- o Bits 0 à 3 = 0x1 : la sonde 2 est activée
- o Bits 4 à 7 = 0x8 : l'identifiant de la sonde 1 défini par l'utilisateur est égal à 0x8
- Octet 6 à 7 = 0xFF06 : ce champ étant signé la valeur hexadécimale 0xFF06 vaut -250 donc la valeur mesurée sur la sonde 2 est -250/10=-25°C

4.1.5 Trame de réponse à une demande de valeur de registre(s)

Cette trame (0x31) est émise suite à la réception d'une trame descendante (downlink) avec le code 0x40 (voir paragraphe 4.2.4). Elle contient les valeurs des registres demandés dans la trame descendante 0x40.

0	1	2	3	4	5	6	 11
Code	Statut				PAYLOAD		
0x31	Cf Statut	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	 Х

Dans cet exemple : CONF ID1 est un registre de 2 octets, CONF ID2 de 1 octet et CONF ID3 de 2 octets Si une erreur est détectée dans la requête, la trame 0x31 renvoyée sera vide.

4.1.6 Trame de données

Cette trame (0x43) contient les valeurs relevées sur les différentes sondes.

0	1	2	3	4	5	6	7	8	9	10
Code	Statut			PAYLOAD						
0x43	Cf Statut	ldentifiant sonde 1	Valeur lue s	ur la sonde I	ldentifiant sonde 2	Valeur lue s	ur la sonde	>	K	Х
0x43	0xA2	0xD1	0x0	15E	0x81	0xF	F06			

Description de la trame :

- Octet 2 :
 - o Bits 0 à 3 :
 - 0 : la sonde 1 est désactivée
 - 1 : la sonde 1 est activée

o Bits 4 à 7 : identifiant de l'utilisateur définie dans le registre 320

- Octets 3 à 4 : valeur mesurée sur la sonde 1.
 - Valeur signée sur 16 bits,
 - Exprimée en dixièmes de degrés,
 - Octet de poids fort en premier.
 - La valeur spéciale 0x8000, équivalente à -3276,8 °C est retournée en cas de défaut du capteur.
- Octet 5 :

o Bits 0 à 3 :

- 0 : la sonde 2 est désactivée
- 1 : la sonde 2 est activée
- o Bits 4 à 7 : identifiant de l'utilisateur définie dans le registre 322
- Octet 6 à 7 : valeur mesurée sur la sonde 2
 - Valeur signée sur 16 bits,
 - Exprimée en dixièmes de degrés,
 - Octet de poids fort en premier.
 - La valeur spéciale 0x8000, équivalente à -3276,8 °C est retournée en cas de défaut du capteur.

Dans l'exemple en gris cela donne :

- Octet 2=0xD1 :
 - o Bits 0 à 3 = 0x1 : la sonde 1 est activée
 - o Bits 4 à 7 = 0xD : l'identifiant de la sonde 1 défini par l'utilisateur est égal à 0xD
- Octets 3 à 4=0x015E : la valeur mesurée sur la sonde 1 est 350/10=35°C
- Octet 5 =0x81:
 - o Bits 0 à 3 = 0x1 : la sonde 2 est activée
- o Bits 4 à 7 = 0x8 : l'identifiant de la sonde 1 défini par l'utilisateur est égal à 0x8
- Octet 6 à 7 = 0xFF06 : étant signé la valeur hexadécimale 0xFF06 vaut -250 donc la valeur mesurée sur la sonde 2 est -250/10=-25°C

FR

4.1.7 Synthèse des conditions d'envoi des trames montantes

Code Description Scenarii d'envoi 0x10 Trames d'information sur la configuration • Démarrage du produit 0x11 • Sortie du mode configuration du produit 0x12 Réception d'une trame descendante 0x01 0x20 Trames d'information sur la configuration • Démarrage du produit • Sortie du mode configuration du réseau Réception d'une trame descendante 0x02 0x30 Trame de vie • Périodiquement en mode « Evénement » 0x31 Trame de réponse à une demande de • Réception d'une trame descendante 0x40 valeur de registre(s) Trame de données • Démarrage du produit 0x43 • Franchissement d'un seuil (mode événement) • Fin de période (mode périodique)

Le tableau ci-après résume les conditions d'envoi des différentes trames montantes :

4.2. Trames descendantes (downlink)

La technologie LoRaWAN permet de transmettre des informations au produit depuis le réseau (downlink). La classe A de la spécification LoRaWAN permet au produit de recevoir des informations du réseau en proposant deux fenêtres d'écoute après chaque communication montante (trame d'uplink).

4.2.1 Trame de demande de la configuration du produit

Cette trame permet de faire savoir au produit via le réseau qu'il doit émettre de nouveau les trames montantes de configuration du produit (0x10 à 0x12).

0	1	2	3	4	5	6	7
Code				PAYLOAD			
0x01	Х	Х	Х	Х	Х	Х	Х

4.2.2 Trame de demande de la configuration du réseau

Cette trame permet de faire savoir au produit via le réseau qu'il doit émettre de nouveau la trame montante de configuration du réseau (0x20).

0	1	2	3	4	5	6	7
Code				PAYLOAD			
0x02	Х	Х	Х	Х	Х	Х	Х

4.2.3 Trame de demande de valeur de registres spécifiques

Cette trame (0x40) permet de faire savoir au produit via le réseau qu'il doit émettre les valeurs des registres demandés.

Trame 0x40 :

0	1	2	3	4	5		n				
Code		PAYLOAD									
0x40	CONF ID1	CONF ID2	CONF ID3	Х	Х	Х	CONF IDn				

Description de la trame :

• Octets 1 à 7 : CONF IDX (8bits): indice du registre à envoyer. Le registre correspondant est 300 + valeur de CONF IDX.

Par exemple, si CONF ID1 = 0x14 (soit 20 en décimal), le transmetteur enverra en retour la valeur du registre S320.

La trame montante associée porte le code 0x31 (voir paragraphe 4.1.5).

0	1	2	3	4	5		11				
Code	PAYLOAD										
0x31	Statut	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	Х				

Dans cet exemple : CONF ID1 est un registre de 2 octets, CONF ID2 de 1 octet et CONF ID3 de 2 octets Si une erreur est détectée dans la requête, la trame 0x31 renvoyée sera vide.

IMPORTANT : l'utilisateur peut spécifier plusieurs CONF ID dans sa trame de downlink mais il est à sa charge de vérifier que selon le protocole, la taille des données disponibles dans une trame descendante sera suffisamment grande pour contenir l'ensemble des données souhaitées. Dans le cas contraire, l'application enverra seulement les premières valeurs.

4.2.4 Trame de mise à jour de la valeur de registres spécifiques

Cette trame (0x41) permet via le réseau de modifier sur le produit les valeurs des registres demandés.

Trame 0x41 :

0	1	2	3	4	5		n			
Code	PAYLOAD									
0x41	CONF ID1	Valeur de CONF ID1	CONF ID2	Valeur de CONF ID2	Valeur de CONF ID2		Valeur de CONF IDn			

Description de la trame :

- Octet 1 : CONF ID1 (8bits) : indice du registre à modifier. Le registre correspondant est 300 + valeur de CONF IDX. Par exemple, si CONF ID1 = 0x14 (soit 20 en décimal), le transmetteur enverra en retour la valeur du registre S320.
- Octet2 : Valeur à donner à CONF ID1 : dans cet exemple, sa valeur est contenue sur 1 octet
- Octet 3 : CONF ID2 (8bits) : indice du registre à modifier. Le registre correspondant est 300 + valeur de CONF IDX.
- Octets 4 et 5 : Valeur à donner à CONF ID2 : dans cet exemple, sa valeur est contenue sur 2 octets

• ...

Le produit ne retourne pas de trame montante en retour. Cependant le bit Config de l'octet de statut (voir paragraphe 4.1.1.2) sera mis à 1 si tout s'est bien passé dans la prochaine trame montante prévue (trame périodique ou d'alarme ou de vie).

Note importante : la valeur 0xFF pour un CONF IDX stoppera à cet endroit la lecture de la trame descendante. Seules les octets précédents cette valeur 0xFF seront pris en compte.

Ce mécanisme peut s'avérer utile lorsque vous devez travailler en longueur de trames de downlink fixe et que vous ne souhaitez pas utiliser tous les octets disponibles.

5. DÉMARRAGE

5.1. Démarrage du produit via aimant

Une fois la configuration du produit effectuée et son montage finalisé, le produit est prêt à être démarré.

Le démarrage s'effectue à l'aide d'un aimant que l'on appose sur la partie haute du produit (cf schéma ci-dessous). L'aimant doit être maintenu en position au minimum 6 secondes de sorte à confirmer le démarrage du produit. Lorsque l'aimant est bien détecté, la LED verte s'allume pendant 1 seconde.

Une fois que le LoRaWAN TEMP valide son démarrage, il émet ses trames de statut puis, après le temps de la période d'émission défini, une trame de donnée.

5.2. Changement de la pile

Lorsque l'indicateur de batterie faible est activé (indicateur dans la trame ou clignotement de la Led rouge), il est possible de changer la pile interne du boitier.

Il est important de conserver la même référence à savoir SAFT LS14500.

Procédure de changement de la pile :

- 1. Ouvrez boitier
- 2. Retirez la pile présente et remplacez-la par la nouvelle, en respectant bien la polarité indiquée sur la carte électronique
- 3. Procédez à la fermeture du boitier
- 4. Redémarrez le produit avec l'aimant comme pour une première mise en marche

Suite à cette procédure le produit va se comporter comme lors d'un premier démarrage.

5.3. Fermeture du boîtier

Une fois les étapes précédentes effectuées, vous pouvez fermer le boiter du LoRaWAN TEMP.

Procédure :

- 1. Assurez-vous que le joint d'étanchéité est bien en place sur la semelle
- 2. Clipsez la carte électronique sur la semelle du boîtier. Assurez-vous que le clip de fixation est bien enclenché dans l'ergot de la carte.
- 3. Insérez la partie supérieure du boîtier. À l'intérieur de cette partie se trouvent des rails de guidage de la carte. Veillez à ce que la carte soit bien positionnée à l'intérieur de ces guides.
- 4. Une fois la carte positionnée, abaissez le capot supérieur et venez le verrouiller sur la semelle du boîtier. Une pression forte permet de clipser les deux parties et d'assurer le niveau de protection IP67.
- 5. Finissez le montage en verrouillant l'écrou du presse-étoupe.

6. INSTALLATION ET UTILISATION

6.1. Positionnement correct des émetteurs

Deux règles sont primordiales pour une optimisation des portées radio.

- La première consiste à positionner votre produit le plus haut possible.
- La deuxième consiste à limiter le nombre d'obstacles pour éviter une trop grande atténuation de l'onde radio.

Position : dans la mesure du possible, installer l'émetteur à une hauteur minimale de 1m50 et non collé à la paroi

Obstacles : idéalement le produit doit être décalé de 20 cm d'un obstacle, et si possible près d'une ouverture (plus l'obstacle est proche, plus la puissance émise sera absorbée). Tous les matériaux rencontrés par une onde radio atténueront celle-ci. Retenez que le métal (armoire métal-lique, poutrelles...) et le béton (béton armé, cloisons, murs...) sont les matériaux les plus critiques pour la propagation des ondes radio.

6.2. Types de fixations

Le produit propose 3 modes de fixation permettant ainsi de nombreuses mises en place en fonction de l'environnement où il doit être déployé.

6.2.1 Fixation sur tube ou mât

Comme expliqué à l'étape 4.1, les meilleures performances radio sont obtenues en positionnant le produit le plus haut possible.

Les fixations pour collier de serrage permettent de fixer le produit sur un mât ou un tube en toute sécurité

Pour optimiser la fixation sur tube ou mât, il est recommandé de retirer le levier de verrouillage/déverrouillage Rail-DIN.

Pour retirer celui-ci, tirer vers le bas sur le levier jusqu'à ce que les ergots de blocage soient face à une partie dégagée et retirer le levier

6.2.2 Fixation par vis

Le produit est livré avec 2 vis CBLZ 2.2 x 19mm et 2 chevilles SX4. Utiliser ces produits ou des produits équivalents pour fixer votre produit à un support plat.

Deux positions peuvent être choisies : à plat ou sur la tranche.

- La position sur la tranche permet d'éloigner le produit de son support et participe donc à une meilleure propagation des ondes radio.
- Si vous optez pour la position à plat, veuillez retirer le levier de verrouillage/déverrouillage Rail-DIN comme expliqué ci-dessus.

6.2.3 Fixation Rail-DIN

- Ce système, intégré au boîtier, permet de fixer le produit sur un rail standard de 35mm
- Pour installer le boîtier, placer les inserts supérieurs sur le rail et abaisser le produit pour le clipser
- Pour retirer le produit, tirer le levier de déverrouillage vers le bas et désengager le produit du rail.

Verrouillage sur Rail DIN

6.3. Mise en place de la sonde déportée

Afin d'assurer une performance optimale de la sonde déportée et éviter tous dommages suivre ces recommandations de mise en place :

- Installer la sonde de contact à plat sur la surface à surveiller
- Positionner la partie de la sonde renforcée au contact des surfaces chaudes sans faire toucher le reste du câble (cf illustration ci-dessous)
- Utiliser l'outil de fixation adéquat à la surface à surveiller (pâte thermique, colliers résistants à la chaleur etc.)

ATTENTION : la sonde doit être manipulée à température ambiante, risques de dommages si manipulation en températures négatives ou supérieures à 90°C

6.3.1 Câblage et décâblage des sondes

Afin de pouvoir décâbler une sonde du produit, merci de suivre les indications suivantes :

ATTENTION : mettre à jour le registre S340 pour désactiver la sonde débranchée, risque de fin de vie prématurée.

Pour rappel la sonde 1 est côté arrondi du boitier ou de la semelle, la sonde 2 est côté plat du boitier ou de la semelle.

Afin de pouvoir câbler de nouveau une sonde du produit, merci de suivre les indications suivantes :

ATTENTION : mettre à jour le registre S340 pour réactiver la sonde

Pour rappel la sonde 1 est côté arrondi du boitier ou de la semelle, la sonde 2 est côté plat du boitier ou de la semelle.

7. HISTORIQUE DE DOCUMENT

F

	Version	Contenu
_	V1.0.0	Création du document
	V1.0.1	MAJ Déclaration de conformité
R	V1.2.0	MAJ Partie 3
ì	V2.0.0	Modifications suite mise à jour RTU & APP
	V2.0.1	Rajout de la version double sonde du produit et modification suit à mise à jour APP

ENGLISH

PRODUCTS AND REGULATORY INFORMATION

Document Information				
Title	LoRaWAN TEMP - User Guide			
Sub-title	1			
Document type	User Guide			
Version	2.0.1			

This document applies to the following products :

Name	Part number	Version firmware
LoRaWAN TEMP ambient probe and remote probe	ARF8180BAB (old release)	Version RTU : V01.04.00
	ARF8180BAD (new release)	Version APP : V01.03.08
LoRaWAN TEMP two external probes	ARF8180BA2D	Version RTU : V01.04.00
		Version APP : V01.03.08

DISCLAIMER

This document and the use of any information contained therein, is subject to the acceptance of the adeunis® terms and conditions. They can be downloaded from www.adeunis.com.

adeunis® makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.

adeunis® reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited. Copyright © 2016, adeunis®.

adeunis® is a registered trademark in the EU and other countries.

TECHNICAL SUPPORT

Website

Our website contains a lot of useful information: information on modules and wireless modems, user guides, and configuration software and technical documents which can be accessed 24 hours a day.

E-mail

If you have technical problems or cannot find the required information in the provided documents, contact our Technical Support on our website, section « Technical Support ». This ensures that your request will be processed as soon as possible.

Helpful Information when Contacting Technical Support

When contacting Technical Support, please have the following information ready:

- . Product type
- Firmware version (for example V1.0) .
- A clear description of your question or the problem
- A short description of the application

EU Declaration of Conformity

WE

Adeunis 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Declare that the DoC is issued under our sole responsibility and belongs to the following product:

Apparatus model/Product: Type:	TEMP LoRaWAN ARF8180AA, ARF8180BA	
Object of the declaration:		

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

Directive 2014/53/UE (RED)

The following harmonised standards and technical specifications have been applied:

Titles EN 300 220-2 V3.1.1 EN 301 489-1 V2.1.1 EN 301 489-3 V2.1.0 EN 62368-1 EN 62311 Date of standard/specification 2017/02 2016/11 2016/09 2014 2006

Otober, 5th,2017

Monnet Emmanuel, Certification Manager

Had

INTRODUCTION

All rights to this manual are the exclusive property of adeunis®. All rights reserved. Copying this manual (without written permission from the owner) via printing, copying, recording or by any other means, translating this manual (in full or partially) into any other language, including all programming languages, using any electrical, mechanical, magnetic or optical devices, manually or any by other methods, is prohibited.

adeunis® reserves the right to change the technical specifications or functions of its products, or to cease manufacturing any of its products, or to cease technical support for one of its products without notice in writing and urges its customers to make sure that the information they have is valid.

adeunis® configuration software and programs are available free of charge in a non-modifiable version. adeunis® can make no guarantees, including guarantees concerning suitability and applicability for a certain type of application. Under no circumstances can the manufacturer, or the distributor of an adeunis® program, be held liable for any damage caused by the use of the aforesaid program. Program names, as well as all copyright relating to programs, are the exclusive property of adeunis®. Any transfer, granting of licences to a third party, leasing, hire, transport, copying, editing, translation, modification into another programming language or reverse engineering are prohibited without adeunis®'s prior written authorisation and consent.

Adeunis

FI

283, rue Louis Néel 38920 Crolles France

Web

www.adeunis.com

ENVIRONMENTAL RECOMMENDATIONS

All superfluous packaging materials have been eliminated. We have done everything possible to make it easy to separate the packaging into three types of materials: cardboard (box), expanded polystyrene (filler material) and polyethylene (packets, foam protective sheets). Your device is composed of materials that can be recycled and reused if it is dismantled by a specialist company. Please observe local regulations concerning the manner in which waste packaging material, used batteries and your obsolete equipment are disposed of.

WARNINGS

/î`

Valid for products indicated in the declaration of conformity

i Read the instructions in the manual.

The safety of this product is only guaranteed when it is used in accordance with its purpose. Maintenance should only be carried out by qualified persons.

Risk of explosion if the battery is removed with an incorrect type. Contact Adeunis for more information if needed.

Risk of explosion if the battery is replaced by an incorrect type

Please note: Do not install the equipment close to a heat source or in damp conditions.

Please note: When the equipment is open, do not carry out any operations other than the ones set out in this document.

Please note: Do not open the product as there is a risk of electrical shock.

Please note: For your own safety, you must ensure that the equipment is switched off before carrying out any work on it.

Please note: For your own safety, the power supply circuit must be SELV (Safety Extra Low Voltage) and must be from limited power sources.

Please note: When the aerial is installed outside, it is essential to connect the cable screen to the building's earth. We recommend using lightning protection. The protection kit chosen must permit the coaxial cable to be earthed (eg: coaxial lightning arrester with earthing of the cable at different places on the aerial at the base of pylons and at the entrance, or just before entering the premises).

FΝ

RECOMMANDATIONS REGARDING USE

- Before using the system, check that the power supply voltage shown in the user manual corresponds to your supply. If it doesn't, please consult your supplier.
- Place the device against a flat, firm and stable surface.
- The device must be installed in a location that is sufficiently ventilated so that there is no risk of internal heating and it must not be covered with objects such as newspapers, cloths, curtains, etc.
- The device's aerial must be free and at least 10 cm away from any conducting material.
- The device must never be exposed to heat sources such as heating equipment.
- Do not place the device close to objects with naked flames such as lit candles, blowtorches, etc.
- The device must not be exposed to harsh chemical agents or solvents likely to damage the plastic or corrode the metal parts.

DISPOSAL OF WASTE BY USERS IN PRIVATE HOUSEHOLDS WITHIN THE EURO-PEAN UNION

/n

This symbol on the product or on its packaging indicates that this product must not be disposed of with your other household waste. Instead, it is your responsibility to dispose of your waste by taking it to a collection point designated for the recycling of electrical and electronic appliances. Separate collection and recycling of your waste at the time of disposal will contribute to conserving natural resources and guarantee recycling that respects the environment and human health. For further information concerning your nearest recycling centre, please contact your nearest local authority/town hall offices, your household waste collection company or the shop where you bought the product

This symbol on the devode or its packaging means the use of a DC voltage.

Warning: If the charger is used with any other batteries or products whatsoever, there is a risk of an explosion. After use, the batteries must be disposed of at an appropriate recycling centre. They must not be thrown away to degrade in the environment. When batteries are replaced, the device must be corectly implemented.

Warning for Switzerland : the annex 4.10 of SR 814.013 Standad must be applied for batteries.

1. PRODUCT PRESENTATION

IMPORTANT NOTE: The LoRaWAN TEMP can only be started with a magnet.

Description:

- The adeunis® LoRaWAN TEMP is a ready-to-use radio device enabling temperatures to be measured and transmitted by wireless communication network.
- This product exists in 2 versions: one including an ambient probe and a remote probe and a second one with two remote probes.
- These two products answer the users need to monitor the temperature (ambient or contact) of a storage room, cold room or all rooms needing a product able to withstand more or less harsh environment.
- The use of the LoRaWAN protocol allows the user to integrate the LoRaWAN TEMP into any network that is already deployed.
- The product emits the data from the sensors either periodically or in an event-based way based on top or bottom thresholds.
- The configuration of the transmitter is accessible by the user via a micro-USB port, allowing in particular a choice of modes of transmission, periodicity or triggering thresholds.
- The LoRaWAN TEMP is powered by a replaceable internal battery.

IMPORTANT NOTE 1: The LoRaWAN TEMP is delivered by default with OTAA configuration, allowing the user to declare his/her product to a LoRaWAN operator

Composition of the package

The product is supplied in a cardboard box containing the following items:

top casing, electronic card, casing base plate

cable gland, 3 gland seals, 2 CBLZ 2.2 x 19mm screws, 2 Fischer SX4 plugs

1.1. General description

1.2. Dimensions

Values in millimeters

1.3. Electronic board

1.4. Two versions of the product

ΕN

1.5. Technical Specifications

1.5.1 General characteristics

Parameters	Value
Supply voltage	Nominal 3.6V
Power supply	Removable battery version: SAFT LS14500
Maximal power	90mA
Working temperature	-25°C / +70°C
Dimensions:	105 x 50 x 27mm
Weight	130g
Casing	IP 67
Radio standards	EN 300-220, EN 301-489, EN 60950
LoRaWAN network	EU863-870
Max power transmission	14 dBm
Applicative port number (downlink)	1

1.5.2 Autonomy

Operating conditions:	Sending periodicity	Autonomy SF7	Autonomy SF12
Product shelf life before use: Maxi-	140 frame/day	6.5 years	7 month
mum 1 year.	100 frame/day	7.8 years	1 year
Calculations performed at a tempera-	50 frame/day	10.4 years	1.9 years
ture of 20°C	20 frame/day	13 years	4.1 years
	10 frame/day	14.3 years	6.5 years
Without super-sampling factor in the period	2 frame/day	15.4 years	12.2 years

The above values are estimations based on certain conditions of use and environment. They do not represent a commitment on the part of adeunis®.

WARNING : the connection of the USB cable and the TEST mode can highly impact the device autonomy. WARNING : the disconnection of a probe leads to an unusual consumption of the product, to avoid this inconvenience update the S340 register configuration.

1.5.3 Sensor characteristics

Characteristics				
Ambient sensor - temperature range	-25°C +70°C			
Ambient sensor - Inertia by 10°C steps	20 minutes			
Remote sensor - Sensor temperature range	-55°C+155°C			
Remote sensor - Wire temperature range	-30°C+105°C			
Remote sensor - Inertia by 10°C steps	15 minutes			
Remote sensor - Cable length	2 meters			
Resolution	0,1°C			
Precision (guaranteed @-40°C+155°C)	+/- 0,1°C			

CAUTION: Allow a few minutes for the probe to come back to room temperature before any manual operations to avoid mechanical damages. In addition, the probe is designed to operate from -30° C to $+105^{\circ}$ C, above this range of temperature the sensor will continue to operate but some tests have to be performed depending on the use case.

2. PRODUCT OPERATION

2.1. Global operation

Important: adeunis® use the most significant byte first format.

The product has several operating modes:

2.1.1 PARK MODE

The product is delivered in PARK mode, it is in standby mode and its consumption is minimal. To switch the product out of the Park* Mode pass a magnet across it for a duration higher than 6 seconds. The green LED illuminates to indicate the detection of the magnet and then flashes quickly during the product starting phase.

The device then sends its configuration and data frames (see paragraph 4.1).

2.1.2 COMMAND MODE

This mode allows the user to configure the registers of the product. To enter this mode, connect a cable to the micro-USB port of the product and enter the command mode by an AT command (see paragraph 3).

2.1.3 OPERATING MODE

There are two possible modes of operation:

• TEST mode:

This mode allows the user to perform tests of the product more quickly by reducing the time scales of production mode and modifying the behavior of the LEDs (see paragraph 2.2.5). **WARNING : this mode has an highly impact on the device autonomy**

• PRODUCTION mode:

This mode allows the user to operate the product in its final use. It should allow a maximum of autonomy to the product.

To switch from one mode to the other the user changes the value of a register

2.1.4 REPLI mode

The product enters this very low consumption mode following the detection of a level of battery that is too low. In this mode the product wakes up every 5 seconds to make the red LED flash twice.

The replacement of the battery (if the product is a replaceable battery version) followed by the application of the magnet takes the product out of this mode to return it to the operating mode.

2.2. Operating modes

2.2.1 Periodic transmission

The product allows the measurement and the periodic transmission of the values of the sensors according to the following diagram:

The product allows you to define a super-sampling to send, not an instantaneous value but, an averaged value at the time of the transmission period defined.

The settings associated with this mode of operation are:

- The transmission period (register 301).
- Potential user identifiers for the sensors (registers 320 and 322).
- The super-sampling factor (register 333).

A complete list of the registers can be found in paragraph 3.4.

E.g.:

Register	Value encoding	Value	Result
S301	Decimal	6	Periodic mode with a period of 6x10min = 60 minutes
S320	Hexadecimal	0xD0	Identifier of the probe 1 set to 0xD
S322	Hexadecimal	0x80	Identifier of the probe 2 set to 0x8
\$333	Decimal	4	The number of samples to be measured and stored between two transmissions is 4

In this example:

• The product transmits every hour (6x10min=60min)

• As the super-sampling factor is 4, there will be a measurement and a storage operation every 60/4=15 minutes

• The value sent will therefore be an average of 4 temperatures collected every 15 minutes

Caution: averaging can reduce the importance of some peaks (maximum values) if the temperature changes quickly.

Take care also over the values of the period and the super-sampling because they have an impact on the consumption of the product. In the extreme a 10 minute transmission periodicity and a factor of super-sampling of 10 leads to a measurement every minute.

2.2.2 Transmission over threshold

The product allows the detection threshold overrun (upper and lower) for each sensor according to the following diagram:

All the beginning of the process follows the same principle as in periodic transmission except that the reference period is the acquisition period instead of the transmission period.

The product sends a frame of data at the threshold overrun and also during a return to normal.

Explanation of thresholds and hysteresis:

The period of monitoring by the sensors is equal to the period of acquisition (register 332) divided by the super-sampling factor (register 333).

The settings associated with this mode of operation are:

- The transmission periodicity (zero in this usage situation) (register 301)
- Potential user identifiers for the sensors (registers 320 and 322).
- The configuration of the events (registers 321 and 323).
- The high alarm threshold for the probe 1 (register 324).
- The high alarm hysteresis for the probe 1 (register 325).
- The low alarm threshold for the probe 1 (register 326).
- The low alarm hysteresis for the probe 1 (register 327).
- The high alarm threshold for the probe 2 (register 328).
- The high alarm hysteresis for the probe 2 (register 329).
- The low alarm threshold for the probe 2 (register 330).
- The low alarm hysteresis for the probe 2 (register 331).
- The acquisition period (register 332).
- The super-sampling factor (register 333).

A complete list of the registers can be found in paragraph 3.4.

E.g.:

Register	Encoding value	Value	Result
\$301	Decimal	0	Event mode
\$320	Hexadecimal	0xD0	Identifier of the probe 1 set to 0xD
\$322	Hexadecimal	0x80	Identifier of the probe 2 set to 0x8
S321	Hexadecimal	0x03	For the probe 1: Detection of high and low thresholds
S323	Hexadecimal	0x02	For the probe 2: Detection of high thresholds only
S324	Decimal	300	The value of the high threshold of the probe 1 is: $300/10=30^{\circ}C$
S325	Decimal	10	The value of the hysteresis of the high threshold of the probe 1 is: $10/10=1^{\circ}C$
\$326	Decimal	50	The value of the low threshold of the probe 1 is: $50/10=5^{\circ}C$
S327	Decimal	5	The value of the hysteresis of the low threshold of the probe 1 is: $5/10=0.5^{\circ}C$
\$328	Decimal	400	The value of the high threshold of the probe 2 is: $400/10=40^{\circ}C$
S329	Decimal	20	The value of the hysteresis of the high threshold of the probe 2 is: $20/10=2^{\circ}C$
\$330	Decimal	-300	The value of the low threshold of the probe 2 is: $-300/10=-30^{\circ}$ C
S331	Decimal	10	The value of the hysteresis of the low threshold of the probe 2 is: $10/10=1^{\circ}C$
\$332	Decimal	12	The acquisition period is 12 minutes
\$333	Decimal	6	The number of samples to be measured and stored between two transmissions is 6

In this example:

• The product compares the measurements every 12 minutes and transmits if necessary

• As the super-sampling factor is 6, there will be a measurement and a storage operation every 12/6=2 minutes

• The value sent will therefore be an average of 6 temperatures collected every 2 minutes

Caution: averaging can reduce the importance of some peaks (maximum values) if the temperature changes quickly.

Take care also over the values of the period and the super-sampling because they have an impact on the consumption of the product. In the extreme an acquisition period of 1 minute and a super-sampling factor of 10 produces a measurement every 6 seconds.

ΞN

2.2.3 Transmission of a daily Keep Alive frame

In the event (threshold) mode only, it is possible that the product would never send data frames. So to be sure that it is working properly a Keep Alive frame is transmitted regularly according to the following diagram:

In periodic mode (register 301 different from 0), there is no Keep Alive frame transmission.

The settings associated with this mode of operation are:

• The setting of the period of transmission of the Keep Alive frame (once per hour to once per day) (register 300).

A complete list of the registers can be found in paragraph 3.4.

register	Value encod- ing	Value	Result
\$300	Decimal	72	The Keep Alive frame is sent every: 72x10=720min i.e. 12h (or twice per day)

2.2.4 TEST mode

E.q.:

This mode allows the user to perform tests of the product more quickly by reducing the time scales of the production mode and modifying the behavior of the LEDs.

It is obtained by positioning register S306 at the value 2 in the COMMAND mode. Once out of the command mode, the product returns to the previously defined application behavior but with the following changes:

- register S300: the periodicity of the Keep Alive is expressed in groups of twenty seconds instead of tens of minutes. Hence in test mode when register 300 = 144, the Keep Alive is no longer sent every 144x10min=1440 minutes or 24h but every 144x20s=2880 seconds or 48 minutes.

- register S301: the periodicity of the sending of data (periodic mode) is expressed in groups of twenty seconds instead of tens of minutes. Hence in test mode when register 301 = 1, the Keep Alive frame is no longer sent every 10min but every 20 seconds.

- register S332: the periodicity of the data acquisition (event mode) is expressed in tens of seconds instead of minutes. Hence in test mode when register 332 = 1, the Keep Alive frame is no longer sent every minute but every 10 seconds.

-The LEDS also have a different behavior, allowing a visual feedback to the user in the event of transmission and reception of frames (see paragraph 2.3 for more details).

A complete list of the registers can be found in paragraph 3.4.

_		
L	2	٠
L	ч	
	-	

Register	Coding the value	Value	Result
S306	Decimal	2	The product is in TEST mode
S300	Decimal	72	The Keep Alive frame is sent every: 72x20=1440s i.e. 24 minutes
S301	Decimal	6	Periodic mode with a period of $6x20 = 120s$ i.e. 2 minutes
S332	Decimal	10	In event mode the acquisition period is: 10x10=100 seconds

2.3. Operation of the LEDs

Mode	LED red state	LED green state
Transmission of frame (TEST mode only)		ON during the transmission cycle
Reception of frame (TEST mode only)	ON during the reception of a downlink frame	
Product in Park mode	OFF	OFF
Magnet detection process (1 to 6 seconds)	OFF	ON from detection of the magnet up to a maximum of 1 second
Product start (after detection of the magnet)	OFF	Rapid flashing 6 cycles, 100 ms ON / 100 ms OFF
Joining process (Lora product)	During the JOIN phase: flashing: 50ms on / 1 s off	During the JOIN phase: flashing: 50ms on / 1 s off (just after the red LED)
	If the JOIN phase is complete (JOIN accept): flashing: 50ms on / 50ms Off (6x)	If JOIN phase is complete (JOIN accept): flashing: 50ms on / 50ms off (just before the red LED)
Switching to the Command mode	Continuously lit	Continuously lit
Battery level low	Flashing (0.5s ON every 60s)	
Product faulty (return to factory)	Fixed ON	
Product in production mode (TEST mode only)	50ms ON / 30 s OFF	50ms ON / 30 s OFF (just before the red LED)
Product in REPLI mode	Flashing (100ms ON / 100ms OFF) x 2 every 5s	

3. DEVICE CONFIGURATION

The product can be configured using the USB interface and in two modes: or using the IoT Configurator (a user friendly application, recommended) or using the AT command.

WARNING : the connection of the USB cable is power consuming and has an highly impact on the device autonomy.

3.1. lot Configurator

The IoT Configurator is a adeunis® application developed to facilitate the device configuration using a user-friendly interface. The IoT Configurator can be used on a smartphone or a tablet using Android or on a computer using Windows.

Compatible Windows 10 only and Android 5.0.0 minimum

Connect the micro-USB interface of the product to the computer or the smartphone. The application recognized automatically the product, download the configuration parameters and allows to configure quicly and instinctively thanks to forms (drop down menu, check box, text box..). The application allows to export an applicative configuration to duplicate it on other products in few clicks. The IoT Configurator is always updated with new features so don't forget to update the application.

For Smartphone or tablet:

Free application available on Google Play https://play.google.com/store/apps/details?id=com.adeunis.loTConfiguratorApp

For computer: directly available on Adeunis website https://www.adeunis.com/en/downloads/

WARNING : the USB connection does not supply power to the product, it induces a consumption of the product as long as the one is connected. It is therefore important not to leave the product connected too long.

3.2. Advanced mode

3.2.1 Connecting the device to a computer

Connect the product to the USB input of a computer. The product has a Type B micro USB connector. During connection, the device must be recognized by the computer as a Virtual Com Port (VCP) device.

Using Windows: Verification that the device has been recognized to be functioning properly can be obtained by consulting the device manager. You should see the USB series device with a corresponding COM port number appear during connection.

🛃 Gestionnaire de périphériques	-	\times
Fichier Action Affichage ?		
> Périphériques logiciels		^
> 🏣 Périphériques système		
✓		
Périphérique série USB (COM5)		
> Processeurs		
> 🕕 Souris et autres périphériques de pointage		
		\sim

If you are not able to see a device of this type, you must install the USB driver for this device, available to download from our website: <u>https://www.adeunis.com/en/downloads/</u>

Select:

- Driver USB-STM32_x64, if your computer is a 64 bits system
- Driver USB-STM32, if your computer is a32 bits system

3.2.2 Command mode

Use a COM port terminal in order to communicate with the device. We use the HERCULES COM port soft terminal available to download for free by clicking on the following link: <u>https://www.hw-group.com/products/hercules/index_en.html</u>

• With Hercules, select the "Serial" tab, then configure the serial port with the following serial parameters:

Parameters	VALUE
Rate	115 200 bps
Parity	None
Data	8
Stop Bit	1

- Select the serial port on which the device has been created with Windows (Name).
- Click on the "Open" button to open the serial port.

NOTE INFORMATION : If the com port has been opened correctly, Hercules will display the message "Serial COM3 port opened". Alternatively, "Serial port com opening error" will be displayed, meaning either that the com port is already open for another application, or it does not exist.

Received/Sent data

CM

Serial port COM3

+++CONNECTING...

Write '+++' to execute the configuration mode..

opened On the com port terminal, you should also have «CONNECTING...» and « CM » feedback for Command Mode. Sending a character on Hercules is displayed in magenta and receiving a character is

displayed in black. If you do not see sending characters, this is probably because ECHO is not active on this program. To activate the option in the accessible menu, right click in the viewing window.

3.3. AT commands

A command starts with 2 ASCII characters: "AT", followed by one or more characters and data (see the list below for the syntax of AT commands available on the modem).

Each command must finish with a "CR" or "CR" "LF" – both are acceptable. (CR indicates: Carriage Return, LF indicates: Line Feed)

Once the command has been received, the modem will feedback:

<cr><lf> "Data" for ATS type playback control <n> ?, AT/S or AT/V

"O" $<\!\!cr\!\!>\!\!<\!\!lf\!\!>,$ for any other command when this has been accepted.

"E" <cr><lf>, if it refuses the command due to a syntax error, unknown command, unknown range, invalid parameter, etc.

"CM" <cr><lf>, if it accepts the input in command mode

Table of AT commands:

Command	Description	Reply example		
+++	Input request in command mode	CONNECTING <cr><lf> CM<cr><lf></lf></cr></lf></cr>		
ATPIN <pin></pin>	Gives access to AT commands if register S304 is different of 0			
AT/V Feeds back the version of the APPLICATIF and RTU software		APP_8230EAA_PRG1706_V01.02.02:RTU_RTU_WM- BUS_868_PRG_1601_V00.00.03 Or APP_8181AAA_PRG1701_V01.00.02:RTU_8120AAB_ PRG_1701_V01.00.01		
AT/N	Feeds back the type of network	"LoRa" or "SIGFOX" or « WMBUS »		
ATS <n>?</n>	Feeds back the content of the n range	Sn=y where y represents the content of the n range		
AT/S	Edits the content of all of the user ranges in the form of a list.	1		
ATS <n>=<m></m></n>	Transfers the m VALUE to the n range	«O» <cr><lf> if Ok, «E»<cr><lf> if error, «W»<cr><lf> if coherency error</lf></cr></lf></cr></lf></cr>		
AT&W	Saves the current configuration to non-volatile memory.	«O» <cr><lf>, «E»<cr><lf> if coherency error</lf></cr></lf></cr>		
ATO	Exit command mode	«O» <cr><lf>, «E»<cr><lf> if coherency error</lf></cr></lf></cr>		
ATT63 PROVIDER	Unblock the operating range	«O» <cr><lf></lf></cr>		

Example of a set of commands and corresponding responses that can be seen on the terminal:

Command syntax	Description	Response Syntax to Next Line		
+++	Input request in command mode	CONNECTING CM		
ATS221=1	Request to switch to activation OTAA mode	0		
ATS214=0018B200	Change APP_EUI MSB	E -> This command is not validated (register no unlocked)		
ATT63 PROVIDER	Unblock the operating range	0		
ATS214=0018B200	Change APP_EUI MSB	0		
ATS215?	Feeds back the value of the S215 range	S200=44512451		
AT&W	Memory request for the state range	0		
ATO	Output request in command mode	0		

Interpretation of the above example: the user wanted to change the beginning of the APP_EUI after having made a command not allowed (answer (E), the registers were unblocked to change this register. An audit of the second part of the APP_EUI is performed and a backup of settings before exit is performed. As soon as the product exits from the command mode, the product makes a request to join.

3.4. Description of the registers

On switching on the product works according to the last saved configuration (Factory Configuration if it is the first start, or if this configuration has not been changed). Command Modification TTY < n > = < M > allows you to change the content of the registers: < n > representing the number of the register and < m > the value to be assigned. This latter is either a decimal value or a hexadecimal value consistent with the «encoding» column of the tables below.

Examples:

- ATS300=6 assigns the decimal value 6 in register 300
- ATS320=2 assigns the hexadecimal value 0x02 in register 320

It is imperative to save the parameters with the command AT&W before exiting the Command mode otherwise all changes will be lost.

IMPORTANT: The registers that are not documented (that can appear in the list following the AT/S command) in the paragraphs that follow are reserved and must not be changed.

3.4.1 Function registers

The list of registers below allows you to change the behavior of the product application.

Register	Size (bytes)	Description	Coding	Details
\$300	1	Transmission period of the Keep Alive frame	Decimal	Default: 144 Min/max: 1 to 255 Unit: x 10min if S306=1 x 20s if S306=2
S301	1	Transmission period of data sensors	Decimal	Default: 6 Min/max: 0 à 255 Unit: x 10min if S306=1 x 20s if S306=2 The value 0 means no periodic sending, therefore event operation
S303	1	Confirmed mode activation	Decimal	Default : 0 (deactivated) Values : 0 (deactivated) to 1 (activated)
S304	2	PIN code	Decimal	Default : 0 (disabled) Min/max : 0 to 9999 PIN code used with ATPIN command. Value 0 disables the PIN code. IMPORTANT: The product does not have a mechanism to unlock the PIN code if it is activated and the code is forgotten.
S306	1	Global operation	Decimal	Default: 0 Allows the product to be switched into one of the follow- ing modes: • 0: PARK mode • 1: Production mode • 2: TEST mode • 3: REPLI mode
\$320	1	Identifier of the probe 1	Hexadecimal	Default: 0x00 Bits 0 to 3: Reserved Bits 4 to 7: Identifier (free to use)

S321	1	Configuring the event behavior of the probe 1	Hexadecimal	Default 0x03 Bits 0 to 1: Threshold triggering • 0 = None • 1 = Low only • 2 = High only • 3 = Low and High Bits 2 to 7: Reserved
\$377	1	Identifier of the probe 2	Hevadecimal	See details of register 320
S323	1	Configuring the event behavior of the probe 2	Hexadecimal	See details of register 321
S324	4	High threshold value of the probe 1	Decimal	Default: 300 Min/max: -550 to 1200 (signed value) Units: tenth of °C
S325	1	Value of the high threshold hysteresis of the probe 1:	Decimal	Default: 10 Min/max: 0 of 255 (Unsigned value) Unit: tenth of °C
S326	4	Low threshold value of the probe 1	Decimal	Default: 50 Min/max: -550 to 1200 (Unsigned value) Unit: tenth of °C
S327	1	Value of the low threshold hysteresis of the probe 1	Decimal	Default: 10 Min/max: 0 to 255 (Unsigned value) Unit: tenth of °C
S328	4	High threshold value of the probe 2	Decimal	Default: 300 Min/max: -550 to 1200 (Unsigned value) Unit: tenth of °C
S329	1	Value of the high threshold hysteresis of the probe 2:	Decimal	Default: 10 Min/max: 0 to 255 (Unsigned value) Unit: tenth of °C
S330	4	Low threshold value of the probe 2	Decimal	Default: 50 Min/max: -550 to 1200 (Unsigned value) Unit: tenth of °C
S331	1	Value of the low threshold hysteresis of the probe 2	Decimal	Default: 10 Min/max: 0 to 255 (Unsigned value) Unit: tenth of °C
S332	1	Acquisition period	Decimal	Default: 10 Min/max : 1 to 255 Unit: x 1minute if S306=1 x 10 seconds if S306=2
\$333	1	Super-sampling factor	Decimal	Default: 1 Min/max: 1 to 10 Unit: no
S340	1	Activation and deactivation of the probes	Decimal	Default : 3 1 : only probe 1 activated 2 : only probe 2 activated 3 : both probes are activated

Eľ

CAUTION: If S340 = 1 or 2, if the remaining probe is torn off, cut off or disconnected the product will stop transmitting.

3.4.2 Network registers

The list of registers below allows you to change the behavior of the product application. This list is accessible in Provider mode following execution of the ATT63 Provider command.

These registers must be handled with caution because they could cause problems of communication or of non-compliance with the legislation in force.

Register	Description	Coding	Details			
S201	Spreading Factor (SF) by default	Decimal	Default: 12 (868) or 10 (915) depending on the reference of the product Min/max: 4 to 12 Unit: None			
S214	LORA APP-EUI (first part – MSB)	Hexadecimal	Default: 0			
S215	LORA APP-EUI (second part – LSB)	Hexadecimal	Key encoded on 16 characters. Each register contains a part of the key. Used during the join phase in OTAA mode			
			E.g.: APP-EUI = 0018B244 41524632 • S214 = 0018B244 • S215 = 41524632			
S216	LORA APP-KEY (first part – MSB)	Hexadecimal	Default: 0			
S217	LORA APP-KEY (second part – MID MSB)	Hexadecimal	Key encoded on 32 byte characters. Each of the 4 registers			
S218	LORA APP-KEY (third part– MID LSB)	Hexadecimal	Used during the join phase in OTAA mode			
S219	LORA APP-KEY (fourth part – LSB)	Hexadecimal				
			E.g.: APP-KEY = 0018B244 41524632 0018B200 00000912 • S216 = 0018B244 • S217= 41524632 • S218 = 0018B200 • S219 = 00000912			
S220	LoRaWAN Options	Hexadecimal	Default: 5 Bit 0: Activation of the ADR ON(1)/OFF(0) Bit 1: Reserved Bit 2: DUTYCYCLE ON(1)/DUTYCYCLE OFF(0) Bit 3 to 7: Reserved WARNING : Deactivation of the Duty Cycle may result in a violation of the conditions of use of the frequency band, depending on the use of the product, thus violating			
			the regulations in force. In the case of disabling the Duty Cycle, the responsibility is transferred to the user			
S221	Mode of activation	Decimal	Default : 1			
			Choice: (see NOTE1 after the board) • 0 : ABP • 1: OTAA			
S222	LORA NWK_SKEY (first part – MSB)	Hexadecimal	Default: 0			
S223	LORA NWK_SKEY (second part - MID MSB)	Hexadecimal	Parameter encoded on 16 bytes. Each of the 4 registers			
S224	LORA NWK_SKEY (third part - MID LSB)	Hexadecimal	Contains 4 Dytes.			
S225	LORA NWK_SKEY (fourth part – LSB)	Hexadecimal				

ΕN

S226	LORA APP_SKEY (first part – MSB)	Hexadecimal	Default: 0
S227	LORA APP_SKEY (second part - MID MSB)	Hexadecimal	Parameter encoded on 16 bytes. Each of the 4 registers
S228	LORA APP_SKEY (third part - MID LSB)	Hexadecimal	contains 4 bytes.
S229	LORA APP_SKEY (fourth part – LSB)	Hexadecimal	
S250	Configuration Canal 0	Decimal (868) Hexadecimal (915)	Default: 1 Obligatory LoRaWAN operating channel This value can not be changed
S251	Configuration Canal 1	Decimal (868) Hexadecimal (915)	Default: 1 (868) ; 0 (915) Obligatory LoRaWAN operating channel This value can not be changed
S252	Configuration Canal 2	Decimal (868) Hexadecimal (915)	Default: 1 Obligatory LoRaWAN operating channel This value can not be changed
S253	Configuration Canal 3	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S254	Configuration Canal 4	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S255	Configuration Canal 5	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S256	Configuration Canal 6	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
S257	Configuration RX2	Decimal (868) Hexadecimal (915)	Default : 1 0 : Channel disabled 1 : Default configuration: LoRaWAN Other : User configuration
S258	Type of tape (only in 915)	Decimal	Default: 3 Min/max: 0 to 3
S280	NETWORK ID	Hexadecimal	Default: 0 Read only
S281	DEVICE ADDRESS	Hexadecimal	Default: 0

<u>NOTE 1 :</u>

The «Over The Air Activation» (OTAA) mode uses a join phase before being able to transmit on the network. This mode uses the APP_EUI (S214 and S215) and APP_KEY (S216 to S219) codes during this phase to create the keys for network communication. Once this phase is completed, the codes APP_sKEY, NWK_sKEY and Device address will be present in the corresponding registers.

A new join phase is started every time the product comes out of Command mode, a reset is performed or the product is turned on.

Codes:

- APP_EUI identifier for global use (provided by default by adeunis®)
- APP_KEY device application key (provided by default by adeunis®)

The «Activation by personalization» (ABP) mode has no join phase; it transmits directly on the network using the codes NWK_sKEY (S222 to S225), APP_sKEY (S226 to S229) and Device address (S281) to communicate.

Codes:

- NWK_sKEY network session key (provided by default by adeunis®)
- APP_sKEY applicative session key (provided by default by adeunis®)
- DEVICE ADDRESS Address of the device in the network (provided by default by adeunis®)

NOTE 2:

By default, channels 0 to 2 use the default settings of the LoRaWAN network; the other 4 channels are inactive. A register value different from 0 or 1 allows the channel to be configured as follows:

Bit	7	6	5	4	3	2	1	0	
Description			Channel	frequency			DR Max	DR Min	
E.g.:		868100 5 3							
Data Rate va	lue (DR)	Description							
0		SF12							
1		SF11							
2		SF10							
3		SF9							
4		SF8							
5		SF7							
6		SF7 – BW 250kH	lz						
7		FSK 50 kps							

The example given allows the user to configure a frequency of 868.1 Hz and authorizes a SF 7 to 9. The command to be sent to perform this operation is:

ATS250=86810053<cr>

4. DESCRIPTION OF THE FRAMES

4.1. Uplink frame

All of the uplink frames of the product to the network (uplink) always have a size of 11 bytes.

4.1.1 Fixed bytes

The first two bytes of the frame are systematically dedicated to indicate the frame code and the status as presented below:

0	1	2	3	4	5	6	7	8	9	10
Code	Statut					PAYLOAD				

4.1.1.01 Byte code

This byte contains the code associated with the frame to facilitate its decoding by the data system.

4.1.1.02 Status Byte

The status byte is broken down in the following way:

Alarm Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Frame Counter		Alarm activated on probe 2	Alarm activated on probe 1	HW	Low Bat	Config
No Error				Х	Х	0	0	0
Configuration done				Х	Х	Х	Х	1
Low bat				0	0	0	1	0
HW Error		0x00 to 0x07		Х	Х	1	Х	Х
Alarm activated on probe 1				Х	1	Х	Х	Х
Alarm activated on probe 2				1	Х	Х	Х	Х

Details of the fields:

• Frame counter: Frame counter, it increments at each transmission and allows the user to see quickly if a frame has been lost. It counts from 0 to 7 before looping back.

• HW: This bit is set to 1 when a hardware error has occurred, for example a writing problem in the EEPROM, a reading problem on the ADC, etc. The product must be returned to the service dept.

• Low Bat: bit at 1 if the battery voltage is less than 2.5V, otherwise 0. This information remains permanent.

• Confg: bit at 1 if a configuration was carried out during the last downlink frame, otherwise 0. This bit returns to 0 as from the next frame.

• Alarm activated (probe 1 or probe 2): the bit is 1 when a threshold (high or low) is detected on the concerned probe, this bit stay at 1 for all the frame sent while the threshold is detected and turns at 0 when the threshold is not detected anymore.

E.g.:

A value of the status byte equal to 0xA2 (= 10100010 in binary) gives:

- Bit 7 at 5 = 101 = 0x05 i.e. a frame counter at 5
- Bit 4 at 0 = 00010 in binary i.e. a low battery alarm

4.1.2 Frames of information on the product configuration

During the passage into operation mode (from the Park or Command Mode) or following the reception of a 0x01 downlink frame, the following frames (0x10 to 0x12) representing the application configuration of the product are transmitted:

0	1	2	3	4	5	6	7	8	9	10	
Code	Status		PAYLOAD								
0x10	Cf Status	S300	S301	S320	S321	S322	S323	S306	S340	S332	
0x10	0xA2	0x48	0x00	0xD0	0x03	0x80	0x02	0x01	0x02	0x0A	

Description of the frame:

- Byte 2: register 300, periodicity of the Keep Alive frame, expressed in tens of minutes
- Byte 3: register 301, periodicity of transmission (periodic mode), expressed in tens of minutes
- Byte 4: register 320, configuration of the probe 1
- Byte 5: register 321, configuration of the events of the probe 1
- Byte 6: register 322, configuration of the probe 2
- Byte 7: register 323, configuration of the events of the probe 2
- Byte 8: register 306, product mode (Park, Standard (production), Test or REPLI)
- Byte 9: register 340:
- o 1 =only probe 1 is activated
- o 2 =only probe 2 is activated
- o 3 = the two probes are activated
- Byte 10: register 332, periodicity of the acquisition, expressed in minutes

In the example in grey this gives:

- Byte 2=0x48: register 300: Keep Alive frame transmitted every 12 hours
- Byte 3=0x00: register 301: event mode
- Byte 4=0xD0: Registry 320: identifier of the probe 1 given by the user is equal to 0xD
- Byte 5=0x03: Registry 321: detection of high and low thresholds of the probe 1
- Byte 6=0x80: Registry 322: identifier of the probe 2 given by the user is equal to 0x8
- Byte 7=0x02: Registry 323: detection of high and low thresholds of the probe 2
- Byte 8=0x01: Register 306: Production mode in progress
- Byte 9=0x02: Register 340: only the probe 2 is activated
- Octet 10=0x0A: register 332: periodicity of acquisition is 10 minutes

0	1	2 to 3	4	5 to 6	7	8	9	10			
Code	Status		PAYLOAD								
0x11	Cf Status	S324	S325	S326	S327	S333	Х	Х			
0x11	0xA2	0x012C	0x0A	0x0032	0x05	0x06					

Description of the frame:

- Bytes 2 to 3: Registry 324, high threshold of the probe 1, Most Significant Byte first
- Byte 4: register 325, hysteresis of the high threshold of the probe 1
- Bytes 5 to 6: Registry 326, low threshold of the probe 1, Most Significant Byte first
- Byte 7: register 327, hysteresis of the low threshold of the probe 1
- Byte 8: register 333, super-sampling factor

In the example in grey this gives:

- Bytes 2 to 3=0x012C: register 324, the value of the high threshold of the probe 1 is: 300/10=30°C
- Bytes 2 to 4=0x0A: register 325, the value of the hysteresis of the high threshold of the probe 1 is: 10/10=1°C
- Bytes 5 to 6=x0032: register 326, the value of the high threshold of the probe 1 is: 50/10=5°C
- Bytes 2 to 7=0x05: register 327, the value of the hysteresis of the low threshold of the probe 1 is: 5/10=0.5°C
- Byte 8=0x06: register 333, the super-sampling factor = 6

FΝ

0	1	2 to 3	4 5 to 6		7	8	9	10		
Code	Status		PAYLOAD							
0x12	Cf Status	S328	S329	S330	S331	Х	Х	Х		
0x12	0xA2	0x0190	0x14	0xFED4	0x05					

Description of the frame:

- Bytes 2 to 3: Registry 328, high threshold of the probe 2, Most Significant Byte first
- Byte 4: register 329, hysteresis of the high threshold of the probe 2
- Bytes 5 to 6: Registry 330, low threshold of the probe 2, Most Significant Byte first
- Byte 7: register 331, hysteresis of the low threshold of the probe 2

In the example in grey this gives:

- Bytes 2 to 3=0x0190: register 328, the value of the high threshold of the probe 2 is: 400/10=40°C
- Byte 4=0x14: register 329, register 329, the value of the hysteresis of the high threshold of the probe 2 is: 20/10=2°C
- Bytes 5 to 6=0xFED4: register 330, the register being signed the hexadecimal value 0xFED4 = -300. Hence the value of the low threshold of the probe 2 is: $-300/10=-30^{\circ}C$
- Byte 7=0x05: register 331, the value of the hysteresis of the low threshold of the probe 2 is: 5/10=0.5°C

4.1.3 Frame of information on the network configuration

During the passage into operation mode (from the Park or Command Mode) or following the reception of a 0x02 downlink frame, the following frame (0x20) representing the network configuration of the product is transmitted:

0	1	2	3	4	5	6	7	8	9	10	
Code	Status		PAYLOAD								
0x20	Cf Status	ADR	MODE	Х	Х	Х	Х	Х	Х	Х	
0x20	0xA2	0x01	0x01								

Description of the frame:

- Byte 2: activation of the Adaptive Data Rate: ON (value = 1) or OFF (value = 0)
- Byte 3: connection mode: ABP (value = 0) or OTAA (value = 1)

In the example in grey this gives:

- Byte 2=0x01: The Adaptive Data Rate is enabled
- Byte 3=0x01: OTAA connection mode

4.1.4 Keep Alive frame

This frame (0x30) is transmitted only in the event mode at the frequency defined by register 300. It contains the same fields as the data frame (0x43):

0	1	2	3	4	5	6	7	8	9	10	
Code	Status		PAYLOAD								
0x30	Cf Status	probe 1 identifier	Value rea prot	nd on the De 1	probe 2 identifier	Value read on the probe 2				Х	
0x30	0xA2	0xD1	0x0	15E	0x81	0xF	F06				

Description of the frame:

- Byte 2:
- o Bits 0 to 3:

0: deactivated

1: activated

o Bits 4 to 7: The user identifier defined in register 320

- Bytes 3 to 4: Value measured on the probe 1
 - Signed value on 16 bits,
 - Expressed in tenths of degrees,

- Most Significant Byte first
- The special value 0x8000, equivalent to -3276, 8°C is returned in the event of a fault in the sensor.
- Byte 5:
- o Bits 0 to 3:
 - 0: deactivated
 - 1: activated

o Bits 4 to 7: The user identifier defined in register 322

• Bytes 6 to 7: Value measured on the probe 2

- Signed value on 16 bits,
- Expressed in tenths of degrees,
- Most Significant Byte first
- The special value 0x8000, equivalent to -3276, 8°C is returned in the event of a fault in the sensor.

In the example in grey this gives:

• Byte 2=0xD1:

- o Bits 0 to 3 = 0x1: The probe 1 is activated
- o Bits 4 à 7 = 0xD: the identifier of the probe 1 defined by the user is equal to 0xD
- Bytes 3 to 4=0x015E: The value measured on the probe 1 is 350/10=35°C
- Byte 5=0x81:
- o Bits 0 to 3 = 0x1: The probe 2 is activated
- o Bits 4 to 7 = 0x8: the identifier of the probe 1 defined by the user is equal to 0x8
- Bytes 6 to 7=0xFF06: the hexadecimal value 0xFF06 = -250. Hence the value measured on the probe 2 is -250/10=-25°C

4.1.5 Reply frame to a register value request in a downlink frame

Following reception of a downlink frame with the code 0x40, the frame 0x31 is transmitted. It contains all the values of the registers requested in the downlink frame 0x40.

• Frame (0x40) sent to the product (downlink) :

0	1	2	3	4	5		n
Code				PAYLOAD			
0x40	CONF ID1	CONF ID2	CONF ID3	Х	Х	Х	CONF IDn

The CONF IDX (8bits) fields represent the index of the registers to be sent. The corresponding register is 300 + CONF IDX value.

• Response frame (0x31) from the product:

0	1	2	3	4	5	6		11	
Code	Status		PAYLOAD						
0x31	Cf. Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3		Х	

In this example: CONF ID1 is a 2-byte register, CONF ID2 a 1-byte register and CONF ID3 a 2-byte register. If an error is detected in the request, the returned 0x31 frame will be empty.

4.1.6 Data Frame

This frame (0x43) contains the values measured on the different sensors.

0	1	2	3	4	5	6	7	8	9	10	
Code	Status		PAYLOAD								
0x43	Cf Status	probe 1 identifier	Value rea prol	ad on the pe 1	Probe 2 identifier	Value read on the probe 2				х	
0x43	0xA2	0xD1	0x0	15E	0x81	0xFF06					

Description of the frame:

- Byte 2:
- o Bits 0 to 3:
 - 0: deactivated
 - 1: activated
- o Bits 4 to 7: The user identifier defined in register 320
- Bytes 3 to 4: Value measured on the probe 1
 - Signed value on 16 bits,
 - Expressed in tenths of degrees,
 - Most Significant Byte first
 - The special value 0x8000, equivalent to -3276,8°C is returned in the event of a fault in the sensor.
- Byte 5:
- o Bits 0 to 3:
 - 0: deactivated
 - 1: activated

o Bits 4 to 7: The user identifier defined in register 322

- Bytes 6 to 7: Value measured on the probe 2
 - Signed value on 16 bits,
 - Expressed in tenths of degrees,
 - Most Significant Byte first
 - The special value 0x8000, equivalent to -3276,8°C is returned in the event of a fault in the sensor.

In the example in grey this gives:

- Byte 2=0xD1:
 - o Bits 0 to 3 = 0x1: The probe 1 is activated
- o Bits 4 to 7 = 0xD: the identifier of the probe 1 defined by the user is equal to 0xD
- Bytes 3 to 4=0x015E: The value measured on the probe 1 is 350/10=35°C
- Byte 5=0x81:
 - o Bits 0 to 3 = 0x1: The probe 2 is activated
 - o Bits 4 to 7 = 0x8: the identifier of the probe 1 defined by the user is equal to 0x8
- Bytes 6 to 7=0xFF06: the hexadecimal value 0xFF06 = -250. Hence the value measured on the probe 2 is $-250/10 = -25^{\circ}C$

4.1.7 Summary of the conditions of the transmission of the uplink frames

The table below summarizes the conditions of the transmission of the different uplink frames:

Code	Description	Sending conditions
0x10 0x11 0x12	Product configuration data frames	 Start-up of the product Exit from the configuration mode Reception of a downlink frame 0x01
0x20	Frames of information on the network configuration	 Start-up of the product Exit from the configuration mode Reception of a downlink frame 0x02
0x30	Keep Alive frame	Periodically in "event" mode
0x31	Reply frame to a register value request in a downlink frame	• Reception of a downlink frame 0x40
0x43	Data Frame	 Start-up of the product Passing a threshold (event mode) The end of the period (periodic mode)

4.2. Downlink frames

LoRaWAN technology makes it possible to transmit information to the product from the network (downlink frame). The class A of the LoRaWAN specification allows the product to receive information from the network by proposing two listening windows after each uplink communication (uplink frame).

4.2.1 Product configuration request frame

This frame allows us to inform the product via the network that it must resend the product configuration uplink frames (0x10 to 0x12).

0	1	2	3	4	5	6	7
Code	PAYLOAD						
0x01	Х	Х	Х	Х	Х	Х	Х

4.2.2 Network configuration request frame

This frame allows us to inform the product via the network that it must resend the network configuration uplink frame (0x20).

0	1	2	3	4	5	6	7
Code		PAYLOAD					
0x02	Х	Х	Х	Х	Х	Х	Х

4.2.3 Specific register value request frame

This frame (0x40) allows to inform the product via the network that it must send the values of specific registers in a uplink frame (0x31).

0	1	2	3	4	5		n
Code	PAYLOAD						
0x40	CONF ID1	CONF ID2	CONF ID3	Х	Х	Х	CONF IDn

Description of the frame:

Bytes 1 to N : CONF IDX (8bits): index of the register to be sent. The corresponding register is 300 + CONF IDX value. For example, if CONF ID1 = 0x14 (hexadecimal, so 20 decimal), the product will change the value of register number 320.

The associated uplink frame has the code 0x31 (see paragraph 4.1.5).

0	1	2	3	4	5		11
Code	PAYLOAD						
0x31	Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	Х

In this example: CONF ID1 is a 2-byte register, CONF ID2 a 1-byte register and CONF ID3 a 2-byte register. If an error is detected in the request, the returned 0x31 frame will be empty.

IMPORTANT : The user can specify several CONF IDs in his downlink frame but it is his responsibility to verify that according to the protocol the size of the data available in a downlink frame will be large enough to contain all the desired data. Otherwise, the application will only send the first values.

4.2.4 Frame for updating the value of specific registers

This frame (0x41) allows to change the value of requested registers.

0	1	2	3	4	5	 n
Code				PAYLOAD		
0x41	CONF ID1	CONF ID1 value	CONF ID2	CONF ID2 value (MSB)	CONF ID2 value (LSB)	 CONF IDn value

Description of the frame :

- Byte 1: CONF ID1 (8bits) : index of the first register to change. The corresponding register is 300 + value of CONF IDX. For example, if CONF ID1 = 0x14 (hexadecimal, so 20 decimal), the product will change the value of register number 320.
- Byte 2: value to assign to CONF ID1 : in this example, its value has a size of 1 byte
- Byte 3: CONF ID2 (8bits) : index of the second register to change. The corresponding register is 300 + value of CONF IDX.
- Bytes 4 and 5: value to assign to CONF ID2 : in this example, its value has a size of 2 bytes
- ..

ΕN

The product does not return any uplink frame following the reception of a downlink frame 0x41. However, the Config bit of the status byte (see section 4.1.1.2) will be set to 1 in the next scheduled uplink frame (periodic or alarm or keep alive frame) if all was well done.

IMPORTANT: the value 0xFF for a CONF IDX will stop the reading of the downlink frame. Only the bytes preceding this value 0xFF will be taken into account. This mechanism can be useful when you need to work in fixed downlink frame lengths and you do not want to use all available bytes.

5. START-UP

5.1. Starting up the product using a magnet

Once the product has been configured and its assembly has been finalized, the product is ready to be started up.

The start-up is carried out using a magnet which you place on the upper part of the product (cf. the diagram below). The magnet must be held in position for at least 6 seconds so as to confirm the start-up of the product. When the magnet is well detected, the green LED lights up for 1 second.

Once the LoRaWAN TEMP unit validates its start-up, it immediately transmits status frames followed by a data frame (according the defined periodicity).

5.2. Replacing the battery

When the low battery indicator is activated (indicator in the frame or flashing of the red LED), it is possible to change the internal battery of the unit.

It is important to use a battery of the same reference, SAFT LS14500.

Procedure to change the battery:

- 1. Open the unit
- 2. Remove the battery and replace it with the new one respecting the polarity as indicated on the electronic card
- 3. Close the unit
- 4. Restart the product with the magnet as for a first start

After this procedure the product will behave as during a first start.

5.3. Closing the casing

Once previous stages have been carried out, you can close the casing of the LoRaWAN TEMP

Procedure:

- 1. Make sure that the seal is properly positioned on the base
- 2. Clip the electronic board onto the casing's base. Make sure that the fastening clip is properly locked into the board's fitting.
- 3. Insert the upper part of the casing. Inside this part there are guide rails for the board. Make sure that the board is properly positioned within these guides.
- 4. Once the board is in position, lower the upper cover and lock it onto the casing's base. Strong pressure will enable both parts to be clipped together and will enable protection level IP67 to be ensured.
- 5. Finish the assembly by locking the packing gland's nut in position

6. INSTALLATION AND USE

6.1. Correct positioning of the product transceivers

There are two key rules for optimizing radio ranges.

- The first one consists of positioning your product as high as possible.
- The second one consists of limiting the number of obstacles in order to avoid excessive attenuation of the radio wave.

Position: To the extent possible, install the transmitter at a minimum height of 1.50 m and do not attach it to the wall.

Obstacles: Ideally, the product must be 20 cm away from any obstacle and, if possible, near an opening (the closer the obstacle is, the more the emitted power will be absorbed). All the materials encountered by a radio wave will attenuate it. Bear in mind that metal (metal cabinets, beams, etc.) and concrete (reinforced concrete, partitions, walls, etc.) are the most critical materials for the propagation of radio waves.

6.2. Types of fastenings

The product offers 3 fastening methods that enable numerous ways of positioning it depending on the environment where it has to be deployed.

6.2.1 Tube or mast fastenings

As explained in section 4.1, the best radio performance is achieved by positioning the product as high as possible.

The fastening collar fastenings enable the product to be fastened on a mast or tube under completely safe conditions

To optimize fastening onto a tube or mast, we recommend you remove the Rail-DIN locking/unlocking lever.

To remove it, pull the lever down until the locking pins are opposite a freed-up part and then remove the lever

6.2.2 Fixing with screws

The product is delivered with 2 CBLZ 2.2 x 19 mm screws and 2 SX4 wall plugs. Use these products or equivalent products in order to fasten your product onto a flat support.

Two positions may be selected: Laid flat or on its edge.

- Placing it on its edge enables the product to be placed at a distance from its support and helps achieve better propagation of the radio waves.
- If you opt for laying it flat, make sure you remove the Rail-DIN locking/unlocking lever, as explained above

6.2.3 DIN-Rail fixing

This system, integrated into the casing, enables the product to be fastened onto a standard 35 mm rail.

- To fit the casing, place the upper inserts on the rail and lower the product to clip it into position.
- To remove the product, pull the unlocking lever down and disengage the product from the rail.

Locking onto the DIN-Rail

6.3. Installation of the remote probe

To ensure an optimal performance of the remote probe, please, follow the installation recommendations here-after:

- Install the contact probe on the surface to monitor
- Place the probe to be sure that it is the reinforced section that is in contact with hot surfaces and not the wire (cf illustration hereunder)
- Use the appropriate fixation for the monitored surface (thermal paste, heat resistant collars etc.)

ΕN

6.3.1 Wiring and disconnection of probes

To disconnect a probe, please follow these instructions:

CAUTION : update the S340 register to deactivate the disconnected probe, risk of premature end-of-life of the battery. As a reminder, the probe 1 is on the rounded side of the product or the sole, the probe 2 is on the flat side of the product or the sole.

In order to wire a probe, please follow these instructions:

CAUTION: update the S340 register to reactivate the probe

As a reminder, the probe 1 is on the rounded side of the product or the sole, the probe 2 is on the flat side of the product or the sole.

7. DOCUMENT HISTORY

Version	Contents
V1.0.0	Creation
V1.0.1	Update Declaration of Conformity
V1.2.0	Update Part 3
V2.0.0	Changes after update RTU & APP
V2.0.1	Two external probes product and changes after APP updates

ΕN

DEUTSCH Vorschriften

HAFTUNGSAUSSCHLUSS

Dieses Dokument und die Nutzung aller darin enthaltenen Informationen setzt das Einverständnis mit den Bestimmungen und Bedingungen von adeunis® voraus.

adeunis® übernimmt keine Garantie für die Richtigkeit oder Vollständigkeit des Inhalts dieses Dokuments und behält sich das Recht vor, jederzeit und ohne Vorankündigung Änderungen an den Produktspezifikationen und -beschreibungen vorzunehmen.

adeunis® behält sich alle Rechte an diesem Dokument und den darin enthaltenen Informationen vor. Die Vervielfältigung, Nutzung oder Weiterverbreitung an Dritte ohne ausdrückliche Genehmigung ist streng untersagt. Copyright © 2016, adeunis®.

adeunis® ist eine eingetragene Marke in den EU-Staaten und anderen Ländern.

TECHNISCHER SUPPORT

Website

Unsere Website enthält viele nützliche Informationen: Informationen zu Produkten und Zubehör, Benutzeranleitungen, Konfigurationssoftware und technische Dokumente, die rund um die Uhr abrufbar sind.

E-Mail

Falls Sie technische Probleme haben oder nicht die benötigten Informationen in den bereitgestellten Dokumenten finden können, setzen Sie sich per website mit unserem technischen Support in Verbindung. Verwenden Auf diese Weise wird sichergestellt, dass Ihrze Anfrage so schnell wie möglich bearbeitet wird.

Nützliche Informationen bei Kontaktierung unseres technischen Supports

Wenn Sie unseren technischen Support kontaktieren, halten Sie bitte folgende Informationen bereit:

- Produkttyp
- Firmware-Version
- Klare Beschreibung Ihrer Frage oder Ihres Problems
- Ihre vollständigen Kontaktdaten

VORBEMERKUNG

Alle Rechte an dieser Anleitung liegen ausschließlich bei . Alle Rechte vorbehalten. Die Vervielfältigung dieser Anleitung (ohne schriftliches Einverständnis des Eigentümers) mittels Drucken, Kopieren, Speichern oder in anderer Weise, die Übersetzung dieser Anleitung (vollständig oder teilweise) in jedwede Sprache, einschließlich aller Programmiersprachen, unter Verwendung jeglicher elektrischer, mechanischer, magnetischer, optischer, manueller Geräte oder anderer Methoden, ist untersagt.

adeunis® behält sich das Recht vor, ohne schriftliche Bekanntgabe und ohne ausdrückliches Verlangen seiner Kunden die technischen Spezifikationen oder Funktionen seiner Produkte zu ändern und sicherzustellen, dass die ihnen zur Verfügung gestellten Informationen gültig sind.

Die -Konfigurationssoftware und -programme adeunis® werden in einer unveränderlichen Version kostenlos bereitgestellt. adeunis® kann für einen bestimmten Typ von Anwendungen keinerlei Garantie übernehmen, auch keine Gewähr für deren Eignung und Verwendbarkeit. Der Hersteller oder Vertreiber eines -Programms kann auf keinen Fall für etwaige Schäden infolge der Nutzung dieses Programms haftbar gemacht werden. Die Namen der Programme sowie alle Urheberrechte im Zusammenhang mit den Programmen sind ausschließliches Eigentum von adeunis®. Jedwede(r) Übertragung, Lizenzierung an Dritte, Vermietung, Verleih, Überführung, Kopie, Bearbeitung, Übersetzung, Veränderung in einer anderen Programmiersprache oder Rückwärtsentwicklung (Reverse-Engineering) ohne die schriftliche Genehmigung und Zustimmung von ist untersagt.

Adeunis

283, rue Louis Néel 38920 Crolles Frankreich

Website

www.adeunis.com

UMWELTSCHUTZHINWEISE

Es wurden alle überflüssigen Verpackungsmaterialien vermieden. Wir haben uns bemüht, dass die Verpackung leicht in drei Materialarten getrennt werden kann: Pappe (Schachtel), expandiertes Polystyrol (Puffermaterial) und Polyethylen (Tüten, Schaumstoff-Schutzlage). Ihr Gerät besteht aus recycelbaren Materialien, die im Falle einer Demontage durch ein Fachunternehmen wiederverwendet werden können. Bitte beachten Sie die vor Ort geltenden Vorschriften zur Entsorgung der Verpackungsabfälle, verbrauchten Batterien und Ihres Altgeräts.

WARNHINWEISE

Lesen Sie die Hinweise in dieser Anleitung.

Die Sicherheit dieses Produkts wird nur für eine bestimmungsgemäße Verwendung gewährleistet. Die Wartung darf nur von einer qualifizierten Person durchgeführt werden.

Explosionsgefahr, wenn die Batterie durch einen falschen Typ ersetzt wird

Achtung: Das Gerät nicht in der Nähe einer Wärme- oder Feuchtigkeitsquelle installieren. Achtung: Bei Öffnung des Geräts keine anderen als die in dieser Anleitung vorgesehenen Vorgänge durchführen.

Achtung: Das Produkt nicht öffnen – Gefahr eines Stromschlags.

Achtung: Zu Ihrer Sicherheit muss vor jedem technischen Eingriff am Gerät dieses stromlos geschaltet

Achtung: Zu Ihrer Sicherheit muss der Stromversorgungskreis des Produkts vom Typ SELV (Sicherheitskleinspannung) sein und es sich um Stromquellen mit begrenzter Leistung handeln.

Bitte beachten Sie: Wenn die Antenne draußen installiert ist, ist es notwendig, den Kabelschirm mit der Erdung des Gebäudes zu verbinden. Wir empfehlen den Blitzschutz. Der gewählte Schutzkit muss das Koaxialkabel wie geerdet haben (zB: Koaxial-Blitzableiter mit Erdung des Kabels an verschiedenen Stellen auf der Antenne an der Basis von Pylonen und am Eingang oder kurz vor dem Betreten der Räumlichkeiten).

Das Produkt muß mit einem Schaltmechanismus zum Abschalten des elektrischen Stroms ausge-stattet werden, welche sich in der Nähe der Ausrüstung befinden muss. Jede elektrische Verbin-dung des Produktes muß mit einer Schutzvorrichtung gegen Spannungsspitzen und Kurzschlüsse ausgestattet werden.

GEBRAUCHSHINWEISE

- Überprüfen Sie vor Benutzung des Systems, ob die in dessen Betriebsanleitung angegebene Versorgungsspannung mit Ihrer Stromquelle übereinstimmt. Falls nicht, wenden Sie sich an Ihren Lieferanten.
- Stellen Sie das Gerät auf eine ebene, feste und stabile Oberfläche.
- Das Gerät muss an einem ausreichend belüfteten Standort installiert werden, um jedes Risiko einer internen Überhitzung auszuschließen, und es darf nicht mit Objekten wie Zeitungen, Decken, Gardinen usw. abgedeckt werden.
- Das Gerät darf auf keinen Fall Hitzequellen wie Heizgeräten ausgesetzt werden.
- Stellen Sie das Gerät nicht in der Nähe brennender Gegenstände wie Kerzen, Lötbrennern, usw. auf.
- Das Gerät darf keinen aggressiven Chemikalien oder Lösungsmitteln ausgesetzt werden, die den Kunststoff angreifen oder die Metallteile korrodieren könnten.
- Das Terminal muss am Gürtel mit Hilfe eines dafür vorgesehenen Clips getragen werden.

ENTSORGUNG VON ABFÄLLEN DURCH DIE NUTZER IN PRIVATHAUSHALTEN IN DER EUROPÄISCHEN UNION

X

Dieses Symbol auf dem Produkt oder auf seiner Verpackung bedeutet, dass dieses Produkt nicht mit anderem Hausmüll entsorgt werden darf. Stattdessen obliegt es Ihrer Verantwortung, Ihre Abfälle zu einer benannten Sammelstelle für die Wiederverwertung von Elektro- und Elektronikaltgeräten zu bringen. Getrenntes Sammeln und Recyceln bei der Entsorgung Ihrer Abfälle trägt zur Bewahrung der natürlichen Ressourcen und zu einer umweltverträglichen Wiederverwertung sowie zum Schutz der menschlichen Gesundheit bei. Für weitere Informationen zum nächstgelegenen Recyclingzentrum wenden Sie sich an das nächste Rathaus, den Entsorgungsdienst für Haushaltsabfälle oder das Geschäft, in dem Sie das Produkt gekauft haben.

Dieses Symbol auf dem devode Gerät oder seiner Verpackung bedeutet den Gebrauch einer Gleichstrom-Spannung.

Achtung: Es besteht Explosionsgefahr, wenn die Batterien durch einen falschen Typ ersetzt werden. Entsorgen Sie die Batterien gemäß den Gebrauchshinweisen. Beim Wechsel der Batterien muss das Produkt wieder richtig und ordnungsgemäß zusammengebaut werden.

WICHTIG für die Schweiz: Für die Batterien muss Anhang 4.10 der Norm SR 814.013 Anwendung finden.