C-BUS OPC Server - Quick Start The following sections describe how to use the supplied **SOFT YON** OPC Server. The OPC Server's functionality can be divided into the *configuration & installation part* and the *on-line part* described in the following sections. # Configuration of Hardware The OPC Server requires the Intelligent External Converter (IEC) for the physical connection to the C-BUS media layer. The IEC is a microprocessor-based single chip device, and the manual configuration by jumpers and DIP switches is required only if you install the Lantronix CoBox module for Ethernet connections between the OPC Server and the IEC. All other configuration steps can be made by software tools and utilities (e.g. changing a C-BUS address for the IEC or assigning an IP address to the IEC with the installed Ethernet sub-module). **Step 1: IEC Connection and Mounting** Figure 1: Wiring diagram for SOFT YON Converter The LAN link indicator lights **green** to indicate a 10 Mbps Ethernet connection. The LAN link indicator lights or blinks **red** (except the start-up procedure) to indicate error detection in the configuration of the Ethernet sub-module. **Note:** The IEC supports C-BUS speeds of 9600 bps and Ethernet speeds of 10 Mbps. To secure the connection of your Intelligent External Converter (IEC), follow the instructions below: - 1. Connect the IEC to the C-BUS (RS485) through a two-wire circuit. - (If you have installed the Ethernet sub-module, you can skip this step.) Connect the IEC to the PC (Personal Computer) through RS232 or RS485 and RS485 to RS232 converter for long distance between the IEC and PC. - 3. (If you have not installed the Ethernet sub-module, you can skip this step.) Connect the IEC to the network using Hub or Switch through the Ethernet port (The IEC must be on the same network segment as your PC with the installed C-BUS OPC Server). - Plug the IEC in the power supply (24V DC or equivalent AC voltage). The required input voltage is 10-25V. #### Step 2: Assigning an IP address to IEC If you have not installed the Ethernet sub-module, please skip this step. If you wish to install the Ethernet sub-module, please proceed to the additional section: Installation of the Ethernet sub-module. The IEC is shipped with the default IP address: 192.168.1.254 For changing the default IP address, use the **UDSIP** utility from the installation CD. Click Run from the Windows Start menu and type the following command line **X:\LAN\LANTRONIX\UDSIP** where **X** is your CD-ROM drive letter. In order to successfully assign an IP address to the IEC using the UDSIP utility, you must use the address that is on the same subnet as the computer that you are using. To get the IP address of your computer, if you are using Microsoft Windows 9X, you can go to an MS-DOS prompt and issue the command 'winipcfg'. If you are using Microsoft Windows NT/2000/XP, use the command 'ipconfig'. Figure 2: The UDSIP utility dialog box To assign a new IP address to your IEC, follow the instructions below: In the 'Enter IP Address to assign field, type the IP address of the IEC (XXX.XXX.XXX.XXX format). In the 'Enter the Hardware Address' field, type the Ethernet address (MAC address) listed on the IEC label (on the right side of the IEC). 2. Click on the 'Set IP Address' button, and USDIP will attempt to assign the address. To check the assigned IP address to the IEC, use ping utility. In the MS-DOS prompt, type the following command 'ping XXX.XXX.XXXX', where XXX.XXX.XXX is the IP address of IEC. The *Reply received* message indicates that the new IP address has been assigned successfully. **Note:** Before assigning an IP address to the IEC please check, using the ping utility, whether this IP address has not been used by another device. #### **Step 3: Installation of COM Port Redirector** If you have not installed the Ethernet sub-module, please skip this step. Use the **RED32BIT** Windows 95/98/ME/NT/2000/XP driver from the installation CD. Click Run from the Windows Start menu and type the following command line X:\LAN\LANTRONIX\REDIRECTOR\RED32BIT where X is your CD-ROM drive letter. After the successful installation, click on the Windows Start and select Programs → Lantronix Redirector → Configuration. **Tip:** You can download the latest version of Lantronix COM Port Redirector from Lantronix's web: **www.lantronix.com/support** Figure 3: The Redirector Configuration tools dialog box To create virtual COM ports for Ethernet connections between the OPC Server and the IEC, follow the instructions below: 1. Click on the 'Com Setup' button and select the redirected ports. Figure 4: The Port Setup dialog box - 2. Select Redirect COM port in the Port Configuration group. - 3. Click on the 'Add IP' button and add the IP address of the IEC. Figure 5: The IP Service Setup dialog box In the **Host** field, type the IP address of the IEC. In the **TCPPort** field, type the TCP port number 3001. Tip: You can also use the TCP port number 3002 for the second channel of IEC and create a virtual COM port associated with the RS-232 and RS-485 interface that is usually used for connections between IEC and PC, without using the Ethernet sub-module. 4. Click on the '**Port Settings**' button and set the reconnect parameters. Figure 6: The Port Settings dialog box The auto reconnects mechanism works only if you check the **Timeout Reconnect** and **Server Reconnect** options. You can also decrease the value of the Connection Timeout (the number of seconds before the re-establishment of the failed connection is attempted). 5. Click on the 'Save' button and reboot your PC. When the COM Port Redirector is properly configured you can suppress the status windows by checking the Silent Mode parameter. **Note:** Remember that if you change the IP address of the IEC, you have to reinstall the corresponding virtual COM ports. **Note:** You must have the TCP/IP protocol installed and configured before installing the COM Port Redirector. #### Step 4: Installation of the C-BUS OPC Server To install the C-BUS OPC Server, follow the instructions below: - 1. Insert the installation CD into your CD-ROM drive. - 2. Select your language. - 3. Click on the Installation of OPC Server. - 4. Respond to the installation prompts. **Note:** If the installation CD does not launch automatically, click on the Windows Start and select Run. In the Open field, enter the following command line **X:\AUTORUN**, where **X** is your CD-ROM drive letter. # Configuration of Software The configuration of the OPC Server is performed by parametric files (*.par, but .par extension is not necessary; a file name without extension may be used as well) and the configuration file **OPC.CFG** (OPC.CFG is the required name). The configuration of the ActiveX Control for Editing Time Programs is performed by the default configuration file **CbusControl.cfg** or by the configuration file that is specified by **CbusConfigurationFileName** parameter of ActiveX Control. The parametric and configuration files are simple text files, and they can be edited by standard text editors (for example using Notepad). The parametric and configuration files are located in the installation directory where the OPC Server is installed. #### Step 5: Building a Parametric File You can build a parametric file using a text editor or you can generate a parametric file using the Excel spreadsheet. It is simpler for projects with more data points to generate parametric files by Microsoft Excel. You can build a configuration file by copying a text from the Excel spreadsheet to the Clipboard and pasting the selected text into the Notepad editor. The latter step saves the text in the notepad as filename.par – a parametric file. You can also save the parametric file directly from the Excel spreadsheet as *Formatted text* (separated by gaps)(*.prn) and type in the file name and extension .par (.par extension is not necessary). You can use a different extension or file name without the extension, but you must insert the correct name of the parametric file into the OPC.CFG configuration file in order to secure the correct functioning of the OPC server. In this way you can use different parametric files for several C-BUS networks. The OPC Server supports the following types of data points in the definition of the parametric file: - Analog Input / Output - Digital Input / Output - Pseudo Analog (Virtual) - Pseudo Digital (Virtual) - Pulse - Totalizer Warning: Never use these system data points: EXECUTING_STOPPED SHUTDOWN STARTUP ### This is an example of a parametric file for the C-BUS OPC Server: ``` BEGIN ;Semicolon is used for comments PARAM_FILE_TYPE -2 ;Simulation/OnLine mode [-2/2] COM PORT COM1 ; COM port [COM1-COM255] COM PORT - the Lantronix COM Port Redirector can only support up to 64 virtual COM ports. Note: for Lantronix's virtual COM ports above nine you have to use following syntax: \\.\COMXX where XX is COM port number in the range from 10 to 64! 9600 ;Baud rate BAUD_RATE - it is the communication speed between IEC and OPC Server; BAUD_RATE it is impossible to change the default communication speed of 9.6 Kbps on the C-BUS because it is the IEC's limit DRIVER_ADDR 31 ; Address of the driver (for internal use) ;Turn On/Off the addressing mode in communication ADDR MODE NO between IEC units and OPC Server [YES/NO] It is necessary to switch this parameter to YES when you need to connect more IEC units via RS-485 ;Turn On/Off the event-based communication between POOLING_MODE NO IEC units and Excel controllers. It is necessary to switch this parameter to YES when you need pooling- based communication between the IEC units and Excel controllers but don't forget obtaining values of all defined data points will be perform only by pooling! Note: the IEC's firmware 2.32 or higher is required for using this feature!!! ;Turn On/Off immediate writing of data point's value IMMEDIATE_WRITING NO without feedback control (reading after writing)! PLC_TIME_SYNC YES ;Turn On/Off time and date synchronization of Excel controllers with PC where is C-Bus OPC Server running 5000 ; Timeout of the C-BUS station [ms] TIMEOUT - the TIMEOUT parameter depends on the number of Excel TIMEOUT controllers on the C-BUS, and the following values are recommended: 5000 up to five controllers on the C-BUS 10000 up to ten controllers on the C-BUS 15000 above ten controllers on the C-BUS IDLE PERIOD ;Delay between obtaining values of data points [ms] ; Maximum number of attempts for receiving the value of REPEAT_COUNT data points from C-BUS network TCP_PORT 5001 ;TCP port for connecting the ActiveX component for editing Time Programs ERR LOGGING NO ; Not used (only for compatibility) ERR_LOGGING_FILE C:\Alarms.log ; Not used (only for compatibility) box 1 29 IEC1 ; Keyword, ID, C-BUS address, C-BUS name box - Keyword - ID of the IEC (the ID number is used only if you need several 1 IECs on the same COM port, but this method of connecting several IECs to one OPC Server is slower than using several parametric files for different COM ports supported by a Multiport serial card or Ethernet virtual COM ports). Note: when you need to connect more IEC units via RS-485 to one OPC Server each IEC unit needs separate box ID identifier! 29 - C-BUS address of the IEC [1-30] IEC1 - C-BUS name of the IEC ``` #### 1 Analog01 12 Α - type of data point <A - Analogue, B - Binary> Α 1 - ID of the IEC that receives the value of the data point {the ID number is defined in the box section} Analog01 - the name of the data point (also known as the "user address") is an 18 character case-sensitive ASCII string 12 - the C-BUS address of the Excel controller where the data point is located, the C-BUS address must be within the range of 2 to 30 as the C-BUS address number 1 is reserved for the CSS (Communication System Server) device and Honeywell's graphics central XBS-i END. All the configuration parameters and the mapping of data points are inserted between the keywords BEGIN and END. The primary key for a data point is based on its correct name (user address). You can find the correct names of data points in the CARE Printout Tool, XI584 terminal, XI581/XI582 terminals or the XL50 MMI panel. **Note:** Before assigning this C-BUS address to the IEC please check, using the **Show All Devices** option in an Excel terminal or panel menu, whether this C-BUS address has not been used by another C-BUS device. #### Step 6: Building the Configuration File OPC.CFG The OPC.CFG file is used for loading more parametric files for several C-BUS networks via a multiple COM port supply with the corresponding number of the IEC. ### This is an example of a configuration file for the C-BUS OPC Server: ``` BEGIN ``` ``` APPLICATION_WINDOW NO ;Show/Hide application window of OPC Server PROPERTIES YES ;If you set this parameter to NO the C-BUS OPC Server will generate additional OPC Items (using _Mode and _InAlarm suffix) for Mode and InAlarm attributes instead of using OPC Item's properties! HVAC ;Parametric file for COM1 (IEC via standard PC serial COM port) XL500.par ;Parametric file for COM2 (IEC via standard PC serial COM port) Config.par ;Parametric file for COM3 (IEC via Ethernet virtual COM port) END. ``` The list of parametric files is inserted between the keywords BEGIN and END. You can also show and hide the application window of the OPC Server by using the APPLICATION_WINDOW parameter. If you have the OPC Server with one IEC (KIT version), you will need to insert only one name of the parametric file into the OPC.CFG configuration file. **Note:** Please check the list of parametric files in the **OPC.CFG** configuration file for the correct use by the OPC server. #### Step 7: Building the Configuration File CbusControl.cfg The CbusControl.cfg file is used for assigning alternative logical names to controllers and devices that are displayed in ActiveX Control for editing the Time Programs dialog in browsing Stations on the C-BUS. The Time Programs implement a controlling strategy for changing the values of data points depending on time sequences. The Time Programs are stored in Excel controllers. An Excel controller can have the maximum of 20 Time Programs. #### This is an example of a configuration file for ActiveX Control: Unless this file exists, the default name of Station X is used as in XBS or XI584 software (where X is the C-BUS address of the station). If you will need to connect the ActiveX Control to more C-Bus networks via one C-Bus OPC Server and more IEC units you have to use corresponding configuration files for each C-Bus network by **CbusConfigurationFileName** parameter of ActiveX Control. The ActiveX Control can load local or remote configuration file. The ActiveX Control loads the local configuration file from directory where the C-Bus OPC Server is installed. The ActiveX Control loads the remote configuration file via network from computer where the C-Bus OPC Server is installed. The remote configuration files are also stored in installation directory of C-Bus OPC Server. The name of remote configuration file has following syntax: **parametric_file_name + box_ID.cfg** (e.g. remote configuration files cbus11.cfg and cbus11.cfg belongs to parametric files cbus1.par and cbus2.par in case of using value 1 for box ID definition in box section of both parametric files). Here is description of loading rules of ActiveX Control's configuration file: - 1. If you don't use parameter "CBusConfigurationFileName" the ActiveX Control tries to load default configuration file CbusControl.cfg. If this local configuration file doesn't exist the ActiveX Control tries to load the remote configuration file from computer where the C-Bus OPC Server is installed. If the remote configuration file doesn't exist the ActiveX Control will not use any configuration file with logical names of Excel controllers and other C-Bus devices. - 2. If you specify the configuration file name by using "CbusConfigurationFileName" parameter the ActiveX Control tries to load the this local configuration file. If this local configuration file doesn't exist the ActiveX Control tries to load the remote configuration file from computer where the C-Bus OPC Server is installed. If the remote configuration file doesn't exist the ActiveX Control will not use any configuration file with logical names of Excel controllers and other C-Bus devices. **Note:** If the default configuration file **ChusControl.cfg** exists in installation directory of C-Bus OPC Server the ActiveX Control always uses this local configuration file instead of using the remote configuration file! #### **Step 8: Using ActiveX Control for editing Time Programs** ActiveX Control is included in the installation of the OPC Server and it communicates with the OPC Server via TCP/IP. You can install ActiveX Control in a different location to the one where the OPC Server is running, usually on PCs where there is an OPC Client and where the ability to change Time Programs across the network is required. **Note:** You cannot add or delete Time Programs in an Excel controller via the ActiveX Control. You cannot add or delete point assignments in a Time Program either. In order to make these changes, you will need to modify the controller database. Use the CARE tools for such changes. You can only change the existing Time Programs by ActiveX Control. #### This is an example of using ActiveX Control inside the Internet Explorer: ``` <html> <head> <title>CbusControl</title> </head> <body> <object classid="clsid:A445C0D3-044A-4930-9DA5-EF595E984E75" id="CbusControl"</pre> width="340" height="190"> <param name="CBusServerPort" value="5001"> CbusServerPort - the TCP port for connecting to the OPC Server (if you have the configuration of the OPC Server with more parametric files for different C-BUS networks, you should use multiple instances of the ActiveX Control with the corresponding TCP ports) <param name="CBusServerAddr" value="localhost"> CBusServerAddr - IP address of the PC where the C-BUS OPC Server is running <param name="CBusConfigurationFileName" value="Cbus1Control.cfg"> CBusConfigurationFileName - the name of configuration file Note: If you don't use this parameter the ActiveX Control tries to load default configuration file CbusControl.cfg <param name="BoxID" value="1"> BoxID - {\tt ID} number of the IEC according to the box definition in your parametric file. Note: If you don't use this parameter the default value 1 is used! <param name="RefreshItems" value="true"> RefreshItems - If you set this parameter to false the ActiveX Control doesn't perform the feedback control for changing items in Daily schedules. It means if you change any item in Daily schedules the ActiveX Control doesn't refresh all items until you reopen the Daily schedules dialog box again. Note: If don't use this parameter the default value true is used! Tip: If you will have any Daily schedules with a lot of items, the refresh of all items can take a quite long time after you change one of them, so that it is very useful to suppress the immediate refresh of all items in Daily schedules when you change one of them. </object> </body> </html> ``` The use of the ActiveX Control is very simple; you only have to set the **CbusServerPort** and the **CbusServerAddr** parameters (described in the previous HTML example) because the ActiveX components use the TCP/IP communication to translate calls between ActiveX Control and the OPC Server. If you want to use the ActiveX Control inside the visualization, your SCADA/HMI system ought to have the support for ActiveX technology. This means that your SCADA/HMI system should contain an ActiveX container for ActiveX Controls. You can establish a connection between ActiveX Control and the OPC Server by the Connect button. You can access the Time Programs that are stored in Excel controllers from multiple PCs, even simultaneously. # Testing and Tuning of the C-BUS OPC Server on-line The name of the OPC server is 'SOFTYON.C-BusDA.1'. Your OPC Client may ask you to specify this name, but many OPC Clients provide a list of available OPC servers. The OPC Server will start automatically when the OPC Client requests a connection, and stop immediately after the OPC Client has released its connection. If your OPC Client fails to stop the OPC Server, you can stop the OPC Server by closing the OPC Server application window (by the **APPLICATION_WINDOW** parameter in OPC.CFG). The OPC Server checks the syntax of configuration and parametric files. In the event of occurrence of any syntax errors, the error window will be displayed. The OPC Server provides for system OPC Items by the SystemItems OPC Group. Many of them are extremely useful and you can use them in your OPC Client. | The System Items are described in the following ta | ı table. | llowina | follo | the | in | described | are | Items | The System | Tł | |----------------------------------------------------|----------|---------|-------|-----|----|-----------|-----|-------|------------|----| |----------------------------------------------------|----------|---------|-------|-----|----|-----------|-----|-------|------------|----| | Name of system OPC Items | Descriptions of system OPC Items | |----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CommunicationErrorXX | Indicates a communication error with IEC | | CBusOccupation XX | Returns the bit maps of online station on C-BUS bit 1 corresponds to station with the C-BUS address 1 bit 30 corresponds to station with the C-BUS address 30 | | BusOccupationMap XX | Group of CBusOccupationMap contains ControllerXY binary items with binary map of online station on C-Bus. Where XY is Excel controller number in the range (1-30) | | FirstCycle XX | Indicates that the OPC Server tries to obtain all values of defined data points for the first time [initialization] | | CurrentPoint | The name of currently processed data point | | TcpErrorCode | Returns the result code of the TCP port initialization. If the value of this system items is not equal to zero try to use other TCP_PORT value in your parametric files! | | NumberOfNonReadyPoints XX | Number of data points which were impossible to obtain from Excel controllers | | FirstNonReadyPoint XX | Name of the first data point that was impossible to obtain from Excel controllers | | FirmwareVersion XX | Firmware version of IEC | | MaxNumberOfPoints XX | Number of maximum data points depends on the purchased license | Where **XX** is ID number of the IEC according to the box definition in your parametric file. Attention: Be sure that you do not exceed the number of maximum data points allowed! The maximum number of the obtained data points per one IEC is 3.000, but the OPC Server is able to manage more than one IEC (64 max); in this way you can obtain up to 192.000 data points. The OPC Server supports the following Excel controllers: XL20, XL50, XL80, XL100, and XL500; and it can coexist on C-BUS with Honeywell's graphics centrals XFI, XBSi, XBS, EBI and SymmetrE. The OPC Server supports following OPC Data Access specifications: 1.0, 2.05 and 3.0. The OPC Server supports event-base communication with Excel controllers according to following Excel firmware's limitations: - In Excel's controllers firmware 1.04 and earlier is only the value attribute reports by event-based communication - In Excel's controllers firmware 1.05 and higher are the value and mode attributes reports by event-based communication The OPC Server using following OPC Item's qualities: - GOOD quality the OPC server has received correct value of data point - BAD quality the OPC server has not received yet the initial value of data point - BAD quality, communication failure communication has failed and no last known value is available (probably the Excel controller is disconnect from C-Bus) - BAD quality, last known value communication has failed but the last known value is available. Item represents the most recent known value of data point The OPC Server has the ability to change the **Auto/Manual** attributes of obtained data points by the OPC Item property **Item Mode**. The OPC Server has also the ability to report the value of **InAlarm** attribute of obtained data points by the OPC Item property **Item InAlarm**. If your OPC Client is not possible to browse the OPC Item property Item Mode you can try to use access to the OPC Item property Item Mode property by number. For Item Mode property you can use value of 5001 instead of browsing. Here is an example of OPC Item ID addressing: "filename_par.data_point_name#5001" where #5001 signifies Item Mode property. You can also use value of 5002 that represents InAlarm attribute. Here is an example of OPC Item ID addressing for InAlarm attribute of data point: "filename_par.data_point_name#5002". The C-BUS OPC Server version has support for OPC Client without ability to browse OPC Item properties. For using this feature you have to set configuration parameter "PROPERTIES NO" in your OPC.CFG file. After setting this parameter to NO the C-BUS OPC Server will generate additional OPC Items for Mode and InAlarm attributes instead of using OPC Item's properties. Here is an examples of OPC Item ID addressing: "filename_par.data_point_Mode" for Mode attribute and OPC Item ID addressing: "filename_par.data_point_InAlarm for InAlarm attribute. We are preparing handling with Excel's alarms by Alarms and Events OPC specification in some next version of C-Bus OPC Server. We are also preparing the new version of ActiveX Control with ability for editing parameter files that are stored in the Excel controllers. # Troubleshooting in the *C-BUS OPC Server* Some of the most common problems that people encounter during the configuration and use of the OPC Server are caused by one or more of the following troubles: - If the Ethernet connection between the OPC Server and IEC doesn't work, please check if the LAN link indicator lights green. If the LAN link indicator lights orange (with plugged patch cable) or it lights red (with unplugged patch cable) then/it does mean that IEC has same IP address as another device on the LAN network. - If the Ethernet connection between the OPC Server and IEC doesn't work, please try the direct connection between the PC and IEC by a cross Ethernet cable. - If the Serial connection between the OPC Server and IEC doesn't work, please check the wiring of the RS-232 communication cable connection. - If the Serial connection between the OPC Server and IEC still doesn't work, please try to use the RS-485 connection by the RS-485 communication cable and the RS-485 to RS232 converter with ADDC (Automatic Data Detection Control). - If the RS-485 connection between the OPC Server and IEC still doesn't work, please check the wiring of the RS-485 communication cable connection. - If the RS-485 connection between the OPC Server and IEC still doesn't work, please try to use another RS-485 to RS232 converter. - If the OPC Server is unable to receive the values of data points, please specify the correct C-BUS address of the Excel controllers and the IEC in the parametric file. Check and make sure that the communication speed (9600 bps) in your OPC Server configuration, all Excel controllers and other C-BUS devices (e.g. XM100, Repeaters, etc.) is the same. - If the OPC Server returns an OPC Item with the "Bad" OPC quality, the data points represented by the OPC Item probably don't exist in the Excel controller; or the Excel controller database was modified; or the Excel controller is switched off; or the data point is not located at the specified C-BUS address of the Excel controller. Check whether the data point name is correct. Remember that data point names are case sensitive! - In case that your OPC Client is unable to browse the OPC Item property Item Mode, you can try to use accessing the OPC Item property Item Mode property by number. For the Item Mode property you can use the value of 5001 instead of browsing. Here is an example of the OPC Item ID addressing: "XL100C.Analog1#5001", where #5001 signifies the Item Mode property. - If your OPC Client still cannot communicate with the Item Mode property, please try to use parameter "PROPERTIES NO" in your OPC.CFG file. You can also try another OPC Client. The Softing OPC Client (opc_dc.exe) may be found in the MISC directory on the installation CD. - If event-based communication with Excel controllers doesn't work please check whether the Excel controllers have firmware version at least 1.03 or higher. - If the communication problems persist, please send the filled-out problem_report.rtf form to support@softyon.cz and our technical support will do their best to be of assistance to you with all the possible problems. The form may be found in the DOC directory on the installation CD. #### Installation of Ethernet sub-module The pictures stated below show the mounting instructions of the Ethernet sub-module. **ON** – DIP position without Ethernet sub-module **OFF** – DIP position with installed Ethernet sub-module Ethernet sub-module **Note:** Data Control **JUMPER1** controls the RS-485 port's data communication of the virtual COM port associated with the RS-485 interface that is usually used for connections between IEC and PC without using the Ethernet sub-module (RTS stands for Ready to Send and ADDC stands for Automatic Data Detection Control).